60-Second Science: Begone, Buckthorn!

When buckthorn moves in to the ecosystem, it dominates.

Imagine a friend invites you to a dinner party, promising a delicious spread of food and libations. You arrive, excited and hungry, only to find nothing but raw kale, brought by an uninvited guest. Regardless of your feelings about kale, this would be pretty underwhelming. The other guests are obviously disappointed about the monotonous spread. Most people leave, and because most people aren’t eating the kale, the kale continues to dominate the party. Even if someone brought in better foods that more people enjoy, there is no room on the tables. The kale is everywhere!

PHOTO: Buckthorn (Rhamnus cathartica).
Common buckthorn (Rhamnus cathartica)

While not a perfect analogy, this anecdote relays the reasons why buckthorn invasion is detrimental to forest ecosystems. The dinner guests are like the other plants and animals that usually live in the woods. They have certain dietary needs, and if those needs cannot be met, they will have to leave and find another place to live. The more one species dominates (kale, or in many local forests, buckthorn) the fewer species can live there, leading to the ecological equivalent of a party that ends at 8:30, just as everyone was arriving. While it may be true that one person at the party really likes kale, it’s hardly fair for the preferences of that person to supersede everyone else’s needs. In the case of buckthorn, many have opposed its removal because that denies robins a berry that they enjoy. However, keeping the buckthorn (which doesn’t belong there in the first place) is like keeping all of the kale on the tables and not allowing for other foods to be served just for that one person. Even more frustrating, the person that likes kale has plenty of other dietary options. Kale isn’t even their favorite food!

PHOTO: The McDonald woods shows healthy filtered sunlight and native plant understory growth after buckthorn removal.
The McDonald woods shows healthy filtered sunlight and native plant understory growth after buckthorn removal.

To many people, the idea of cutting down trees to help forests grow stronger is counterintuitive. But buckthorn is no ordinary tree. It is an invasive species, meaning that it doesn’t belong in Chicago area forests, and it steals resources from the plants that are supposed to live here. So remember, when you hear people talking about cutting down buckthorn, they are actually doing it to make the habitat healthier and more inclusive in the long term. They are working to replace the kale at the party with better food and drinks, ensuring that all the guests that were invited can have a good time, staying up until sunrise.

Read more about our ongoing buckthorn battle, and see the difference removal makes in restoring an ecosystem.


Bob Sherman

Bob Sherman is an undergraduate studying environmental science at Northwestern University. His research interests include prairie restoration and how abiotic factors impact prairie and forest ecosystems. He hopes that his research will have a positive impact on ecosystem restoration and management.


Students in the Chicago Botanic Garden and Northwestern University Program in Plant Biology and Conservation were given a challenge: Write a short, clear explanation of a scientific concept that can be easily understood by non-scientists. This post is part of their series.

©2016 Chicago Botanic Garden and my.chicagobotanic.org

60-Second Science: The Janzen-Connell Model or Why Are the Tropics So Diverse?

PHOTO: Peter DeJonge.Peter DeJongh is a first-year master’s student studying land management and conservation in the graduate program at Northwestern University and the Chicago Botanic Garden. His academic focus is on developing strategies to optimize plant and wildlife conservation and restoration. He aims to work in applied conservation or environmental consulting upon completion of his degree.


Imagine a large, beautiful canopy tree standing in the middle of a lush, tropical rainforest. This centuries-old tree produces thousands of seeds every year that densely litter the forest floor around it. Where then would you imagine its seedlings are likely to spring up? Probably in the seed-covered area around the tree right? Well, according to the Janzen-Connell model, you’d be wrong.

Daniel Janzen and Joseph Connell are two ecologists who first described this phenomenon in the early 1970s. They put their exceptional minds to the task and independently discovered that the probability of growing a healthy seedling was actually lower in the areas with the most seed fall. They hypothesized that seed predators and pathogens had discovered the seed feast around the parent tree and moved in, preventing any seeds in the area from growing into seedlings. These predator pests include beetles, bacteria, viruses, and fungi, and have been labelled as host-specific predators and pathogens since they appear specifically around the parent tree, or host.

DIAGRAM: Janzen-Connell hypothesis.

PHOTO: This Malaysian silverleaf monkey eats fruit as part of its diet, dispersing seeds far beyond the canopy line.
This Malaysian silverleaf monkey eats fruit as part of its diet, dispersing seeds far beyond the canopy line.

Janzen and Connell’s hypothesis shows just how important the animals that eat the seeds are to the parent tree. These primates, birds, and other vertebrates move the seeds to different areas where they can successfully grow without being bothered by those pesky host-specific predators. Without these animal helpers, the forest couldn’t continue to grow, and the world’s most diverse areas would be in serious trouble.

Garden post-grads and scientists are in the field working on restoration efforts in the Colorado plateau, fossil hunting in Mongolia, and filming videos on sphinx moths. Interested in our graduate programs? Join us. 


Students in the Chicago Botanic Garden and Northwestern University Program in Plant Biology and Conservation were given a challenge: Write a short, clear explanation of a scientific concept that can be easily understood by non-scientists. This is our fifth installment of their exploration.

©2016 Chicago Botanic Garden and my.chicagobotanic.org

60-Second Science: Phylogenetic Trees

PHOTO: Dr. Evelyn Williams, Conservation Scientist.Dr. Evelyn Williams is an adjunct conservation scientist at the Garden. She’s interested in genetic diversity at multiple scales, from the population to the family level. While at the Garden, Dr. Williams has worked on rare shrubs from New Mexico (Lepidospartum burgessii), systematics of the breadfruit family (Artocarpus), and using phylogenetic diversity to improve tallgrass prairie restorations.


When a scientist says that chimpanzees are related to humans, or that chickens are related to dinosaurs, what do they mean?

They mean that chimpanzees and humans share a common ancestor from many thousands of generations ago. Although that shared great-great-great-great-(etc.)-great-parent lived many years ago, that shared ancestor lived more recently than the ancestor that humans share with dogs. So humans are more closely related to chimpanzees than dogs because they have the most recently shared ancestor. Scientists call this the “most recent common ancestor.”

This most recent common ancestor wasn’t a chimp, and it wasn’t a human—it was a different species with its own appearance, habits, and populations. One of these populations evolved into humans, and one of the populations evolved into chimpanzees. We know this because of a field of study called “phylogenetics.” Scientists use phylogenetics to study how species are related to each other. 

Phylogenetic tree diagram.

Using DNA sequences, scientists construct tree-like diagrams that trace how species are related. A human’s DNA is more similar to a chimpanzees’ than to a chicken, so a tree diagram would connect humans and apes. Dinosaurs and chickens would be shown as related as well, and then these two groups would be connected.

Interested in learning more? Explore phylogenetics with the Tree of Life Web Project. Dig deep into the study of the phylogenetic roots of food plants with The Botanist in the Kitchen


Students in the Chicago Botanic Garden and Northwestern University Program in Plant Biology and Conservation were given a challenge: Write a short, clear explanation of a scientific concept that can be easily understood by non-scientists. This is our fourth installment of their exploration.

©2016 Chicago Botanic Garden and my.chicagobotanic.org

60-Second Science: Prairies Need Fire


PHOTO: Becky Barak.Becky Barak is a Ph.D. candidate in Plant Biology and Conservation at the Chicago Botanic Garden and Northwestern University. She studies plant biodiversity in restored prairies, and tweets about ecology, prairies, and her favorite plants at @BeckSamBar.


A dark, stinky plume of smoke rising from a nature preserve might be alarming. But fire is what makes a prairie a prairie.

A prairie is a type of natural habitat, like a forest, but forests are dominated by trees, and prairies by grasses. If you’re used to the neatly trimmed grass of a soccer field, you may not even recognize the grasses of the prairie. They can get so tall a person can get lost.

Prairies are maintained by fire; without it, they would turn into forests. Any chunky acorn or winged maple seed dropping into a prairie could grow into a giant tree, but they generally don’t because prairies are burned every few years. In fact, fossilized pollen and charcoal remains from ancient sediments show that fire, started by lightning and/or people, has maintained the prairies of Illinois for at least 10,000 years. Today, restoration managers (with back up from the local fire department), are the ones protecting the prairie by setting it aflame.

PHOTO: Chicago Botanic Garden ecologist Joah O'Shaughnessy monitors a prairie burn.
Garden ecologist Joan O’Shaughnessy monitors a spring burn of the Dixon Prairie.
PHOTO: New growth after a prairie burn.
New growth emerges a scant month after the prairie burn.

Prairie plants survive these periodic fires because they have incredibly deep roots. These roots send up new shoots after fire chars the old ones. Burning also promotes seed germination of some tough-seeded species, and helps keep weeds at bay by giving all plants a fresh start.

Read more about our conservation and restoration projects on the Chicago Botanic Garden website. Want to get involved in our local ecosystem conservation? Find your opportunity with Chicago Wilderness.


Students in the Chicago Botanic Garden and Northwestern University Program in Plant Biology and Conservation were given a challenge: Write a short, clear explanation of a scientific concept that can be easily understood by non-scientists. This is our third installment of their exploration.

©2016 Chicago Botanic Garden and my.chicagobotanic.org

60-Second Science: Plants’ Roots Helped Them Move to Land

PHOTO: Alicia Foxx.Alicia Foxx is a second-year Ph.D., student in the joint program in Plant Biology and Conservation between Northwestern University and the Chicago Botanic Garden. Her research focuses on restoration of native plants in the Colorado Plateau, where invasive plants are present. Specifically, she studies how we can understand the root traits of these native plants, how those traits impact competition, and whether plant neighbors can remain together in the plant community at hand.


Life for plants on land is hard because the environment can become dry. Water is important because it is used when plants take in sunlight and carbon dioxide to make energy; this is called photosynthesis. In fact, the largest object in a plant cell is a sack that holds water. Without water, plants would die.

Plants first evolved in water, which is a comfortable place: there is little friction, you almost feel weightless, and…there was plenty of water back then. These plants had no difficulty photosynthesizing, as water diffused quite easily into their leaf cells! They had little use for roots.

Evolving Plant Structures

In the time plants evolved to live on land (100 million years later), water shortages and the need to be anchored in place became issues and restricted plants to living near bodies of water. Some plants evolved root-like structures that were mostly for anchoring a plant in place, but also took in some water.  

It wasn’t until an additional 50 million years after the move on to land that true roots evolved, and these are very effective at getting the resources essential for photosynthesis and survival. In fact, the evolution of true roots 400 million years ago is associated with the worldwide reductions in carbon dioxide, since more resources could be gathered by roots for photosynthesis. Importantly, plants were no longer tied to bodies of water!

PHOTO: tree roots.
Large roots anchor a plant in place.
PHOTO: bulb with tiny bulblets and root hairs.
Tiny root hairs on a bulb take up nutrients when moisture is present.

Water issues continued, however, even with true roots. Early roots were very thick and could not efficiently search through the soil for resources. So plants either evolved thinner roots, or formed beneficial associations with very tiny fungi (called mycorrhizal fungi) that live in the soil. These fungi create very thin, root-like structures that allow for more effective resource uptake. In general, while life on land is hard, plants have evolved ways to cope via their roots.

Garden scientists are studying the relationships between plants and mycorrhizal fungi in the soil. Orchids are masters of nutrient collection. The vanilla orchid has terrestrial (in soil) and epiphytic (above ground, or air) roots—and forms relationships with fungi for nutrient collection. Read more about research on Vanilla planifolia here


Students in the Chicago Botanic Garden and Northwestern University Program in Plant Biology and Conservation were given a challenge: Write a short, clear explanation of a scientific concept that can be easily understood by non-scientists. This is our second installment of their exploration.

©2016 Chicago Botanic Garden and my.chicagobotanic.org