Archives For children

This year, the Living Wall in the Grunsfeld Children’s Growing Garden needed to be replanted. The metal cells that hold the plants to the wall were removed and taken to the Garden’s greenhouse nursery to grow new plants before placement outside for the summer.

This left us with four empty walls at the entrance to the Growing Garden. So we decided to get creative. We made an “alternative” living wall. 

PHOTO: sixteen cone-shaped pockets containing small plants are displayed on the brown walls.

The south-facing wall is now covered with burlap pocket planters containing alyssum, lettuce seedings, grass, and coriander.

Our carpenters covered foam boards with brown burlap and installed these panels on the living wall frame where the plant cells had been removed. Students from the Garden’s Nature Preschool planted seeds and transplanted seedlings into small pots. We placed the plants into colored burlap planters and pinned them to the foam walls, and voila! We have a vertical garden again.

You can do this at home. Making planting pockets is simple and fun.

  1. Plant seeds or transplant small plants and let them sprout. We used biodegradable Fertilpots, but you could also start seeds in egg cartons, newspaper pots, or plastic pots.

2. Cut the burlap into squares that are twice as long and wide as the pots.

PHOTO: The picture shows the size of the burlap square next to the pot that was used.

Our Fertilpots were 4″ tall, so I cut the fabric roughly into 8″-x-8″ squares. This does not need to be exact.

3. Fold the square in half diagonally and sew a seam along the side. You can use a heavy duty needle with a sewing machine or do this by hand with a darning needle. It might be possible to use a hot glue gun to make the seam, but I did not try this.

PHOTO: This shows what the burlap looks like after it is sewed in half.

I used a sewing machine because I made more than 100 of these. They could be sewn by hand.

4. Turn the triangle inside out to form the pocket. Slip the planted pot into the pocket and get ready to hang it on a wall.

PHOTO: This shows the pocket with a pot inside.

The seam side of the pocket is the back, and the pointed front top can either be folded down or cut off.

5. To hang on the wall, pinch the extra fabric so the burlap fits snugly around the pot. Fold down the point in front or cut it off—your choice. Push a long pin through the pot and the fabric and pin the pocket to the wall. (I had pins used by our horticulturists to propagate cuttings; you could use T-pins or other pins with large heads.) You could also lace a ribbon around the top of the pocket and cinch the fabric, then hang the planter by the ribbon.

PHOTO: The picture shows a hand holding the fabric to make the pocket fit around the pot.

Gathering the extra fabric will help hold the pot better, and it will look neater on the wall.

Students in our Nature Preschool enjoyed helping to grow the plants and pin them to the Living Wall. Each child wanted to place his or her planter next to a friend’s planter so they could grow close together.

wall KJ with girl

Just for fun, we experimented with some other kinds of planters, including plastic bottles and shoes.

PHOTO: a 2 liter plastic bottle turned sideways and filled with soil and oregano plants is pinned to the wall.

If you want to try growing a plant in a 2-liter bottle, cut a rectangular opening in the side of the bottle, poke six to eight holes on the opposite side for drainage, fill with soil, plant, and hang it up.

The preschoolers are fascinated by the soda bottle planter. They like to look in the round opening on the side. The toddler shoe makes everyone smile. We may add more surprising planters over the next few weeks, just to keep it interesting.

PHOTO: a toddler shoe with alyssum growing in it is laced with twine and hanging on the wall,

An old shoe can become a whimsical planter that sparks imagination.

If you decide to try something like this at home, be advised that the small pots need to be watered frequently (ours need watering daily) because they tend to dry out faster than larger containers. It’s a good project for young children because they will get to do a lot of watering without harming the plants.

Our “alternative living wall” is only temporary. Stop by the Grunsfeld Children’s Growing Garden between now and June 12 to see how it’s growing. After that, the real living wall will be installed for the rest of the year.


©2017 Chicago Botanic Garden and my.chicagobotanic.org

Meet Naranjilla

(Solanum quitoense)

Kathy J. —  July 23, 2013 — Leave a comment

We get a lot of questions about one particular plant in the Grunsfeld Children’s Growing Garden: Naranjilla (pronounced nahr-ahn-HEE-yah). It’s easy to see why.

PHOTO: The naranjilla plant has thick green leaves that are about 10-12 inches long, 8-10 inches wide, with deeply serrated edges. Leaves have dark purple hairs on the veins and petioles.

You can find this naranjilla (Solanum quitoense) in Bed #10 in the Growing Garden.

This attractive plant has large, thick, green leaves, is about 10–12 inches long and 8–10 inches wide, with deeply serrated edges, and is completely covered in tiny, purple hairs (which are not really hairs—in the botanical world they are called “tricomes”). It is native to Ecuador and other South American countries.

There is more to notice about this intriguing plant than its gorgeous coloring, interesting texture, and striking presence. First, the naranjillas in this small garden bed, number 10, were put there for a reason. All but one of the plants in this bed are in the nightshade family, Solanaceae. This family includes tomato, eggplant, potato, and petunia. Naranjilla is cousin to these more familiar plants.

CIMG0876

Upon closer inspection, it’s easy to see how these plants are related.

When you’re in the garden, take a look at the flowers on these plants. You will see the similarities that characterize plants in the nightshade family. Notice that they all have five petals that are fused so that they look like a funnel with five lobes. You’ll easily be able to pick out the one plant that does not belong in the family.

PHOTO: close-up of a bright pink petunia.

See how this ‘Pink Dreams Fuseable’ petunia (Petunia x hybrida ‘Pink Dreams Fuseable’) has five petals fused together, so it is like one continuous petal? You’ll find the same bloom design on tomato and other nightshade flowers.

The naranjilla won’t bloom until much later in the summer, and when it does you’ll recognize the similar flower shape. Naranjilla means “little orange” in Spanish, because the fruits are small, yellow, and spherical like little oranges. Unfortunately, our growing season in Chicago is not long enough for naranjilla plants to produce the sweet fruits, which are juiced for beverages in Ecuador.

Another interesting thing about the naranjilla—a detail that separates it from other members of the family—is that the leaves look soft and fuzzy, but they can grow sharp thorns along the veins. As you might expect, the thorns discourage large animals from eating the leaves. They are not as sharp and menacing as rose thorns, but you wouldn’t want to stroke a naranjilla leaf that bears thorns.

PHOTO: this close up of a naranjillo leaf shows sharp thorns sticking up from the veins of the leaf.

This naranjilla leaf, which is growing in a container on the Learning Center deck, is covered in thorns. There are no thorns on the plants in the Growing Garden. (The white things on this leaf are stamens fallen from the nearby “bunny tail” grass.)

Stop by the Growing Garden at the Learning Campus from noon to 4 p.m. Monday through Friday, and 10 a.m. to 4 p.m. on weekends this summer to see our naranjilla plants and enjoy free family drop-in activities.

Please note: the Growing Garden is closed on weekday mornings while Camp CBG is in session.


©2013 Chicago Botanic Garden and my.chicagobotanic.org

Growing a Bean in a Bag

Or, How to Train Your Plant Part 2 1/2

Kathy J. —  May 26, 2013 — Leave a comment

Garden blog followers may remember that in “How to Train Your Plant” I demonstrated a way to grow a bean seed in a plastic bag to test geotropism. I started working on that project around Thanksgiving week last year. At that time, I started a few bean bags just to see what would happen. I kept one seed growing in the bag all winter, adding water as needed.

PHOTO: A ziptop bag was used as a container to grow a bean plant. Roots, stem, leaves, and the remains of the original seed are visible.

The bean plant grew for five months, leaning toward the window in my office.

The plant produced a white flower about a month ago. I should have taken a picture. Now this week I discovered a seedpod growing where the flower had been! In the picture, you can see the wilted flower petals still hanging from the tip of the reddish colored pod. Botanically speaking, this is the fruit of the plant, even though you might not think of beans as fruit in your diet.

PHOTO: a red bean pod, about 2 and a half inches long is attached to the stem of the plant.

The red fruit was hidden under the leaves.

So if you try this activity, and you stick with it for six months, you, too, may be rewarded with a little treasure!


©2013 Chicago Botanic Garden and my.chicagobotanic.org

Have you heard the sounds coming from nearby lakes, ponds, and puddles this month? The American toads are singing!

PHOTO: female toad looking directly at the camera

This female American toad may be listening for the enchanting song from a handsome male toad.

Every spring, the toads emerge from hibernation in wooded areas and hop to the nearest standing water to breed. The sound you hear comes from the males, who are singing to attract a mate. You’ll hear the sound of hundreds of toads at the Kleinman Family Cove for the next week or so, maybe longer.

The toads will pair up and lay a string of eggs in shallow water where it is warmest and rich in food for their offspring. After laying eggs, the adults will return to the woods or shady gardens to look for food, leaving their babies to fend for themselves.

PHOTO: the toad pair are together in the water with a string of black eggs she has laid around the algae.

The black lines of dots in the water are strings of eggs that were laid by the toad on the right.

The black embryo inside each egg will grow into tiny tadpoles and hatch in about a week. They will grow and develop into half-inch toadlets over the next few weeks. Then they will leave the water and join their parents in the shady gardens and woods. With any luck, some of them will survive the next two years, developing to full maturity, and return to the Cove to breed.

This is the only time of year to hear the toads singing, so visit the Cove this month. If you visit over the next four weeks, maybe you’ll see some little black tadpoles swimming in the water.

Please resist the urge to collect them to take home. You won’t be able to provide enough of the right kind of food for a growing tadpole or toadlet, and they will die. Watch them grow up successfully in their natural habitat at the Cove throughout the month of May and early June instead!


©2013 Chicago Botanic Garden and my.chicagobotanic.org

How to Train Your Plant II

Part 2: Using Light

Kathy J. —  March 8, 2013 — Leave a comment

Blog followers will remember that in the first “How to Train Your Plant” post, we demonstrated how plants respond to the gravitational pull of the earth. Geotropism is difficult to overcome, but that didn’t stop me from trying to make a plant grow sideways through a maze. You can try this activity at home.

You will need these items:

  • a shoebox (or any kind of box)
  • cardboard to make dividers
  • duct tape (or any opaque tape)
  • soaked bean seeds—I used different beans from a soup mix
  • a container with soil
PHOTO: The materials for the maze are displayed.

You’ll need a shoe box, cardboard dividers, seeds, a pot with soil medium, and of course scissors and tape for constructing the maze.

Stand the box on its side. Then cut two pieces of cardboard to fit in the box and make divisions. You’ll want these to fit as snugly as possible inside the box, but they don’t have to be perfect. The tape will fix that. Cut a large window in each divider. Cut a window on one end of the box. Tape the dividers in place as shown in the picture.

PHOTO: The maze assembly is shown in the shoebox. There are two dividers with cut out windows and a whole in the side of the box for light to shine sideways on the sprouting bean seeds.

Pardon the crude appearance of this maze. I wasn’t going for style points.

Plant the seeds in the soil and put the container on the side opposite of the hole you cut. Just for fun, I used several different seeds from a bean soup mix to see if one kind would get through the maze better than the others. It was like a bean-seed “race.” You can try whatever you like.

Make sure the holes in the divisions are big enough to allow lots of light in from the side, and don’t vary the height too much. Remember, we are fighting the plant’s tendency to grow up—if it’s too challenging, it won’t work. Trust me, I learned this the hard way.

When the maze is complete, give your beans a last bit of water, and maybe a kiss, and then close the box. Apply tape along the top edge, to secure it and reduce light. Then put it next to a window and wait.

And wait.

It’s going to take a few weeks. Remember, horticulturists are very patient. Open the box every few days or so to be sure it has not dried out. Add a little water, but only enough to moisten the soil if it is very dry.

When you see the bean plant emerging through the open window in the box, open it and take a look. How long this will take will depend on the kind of beans you use, how far the plant has to grow, and how warm the room is.  

The beans have sprouted and are moving toward the light

The beans have sprouted and are moving toward the light

 It took my beans about five weeks to grow through the second window.

 

PHOTO: all of the bean sprouts are leaning toward the light.

The beans were definitely torn between growing up and growing in the direction of the light.

 

The winning sprouts, which I believe were lentils, did not actually make it through to the last window when I took this picture, and I’m not sure it has enough “umph” to do it. Still, notice how all of the plants leaned toward the light and most of them grew through the first window. That is a positive result!

What is going on here?

This activity demonstrates phototropism. Photo is the Latin word for “light,” and you will remember that a tropism refers to an organism’s response to stimulus, so that phototropism means plants grow toward the light.

It makes sense for plants to reach for the light because they need light to make sugars, their source of energy. Normally, growing up against the pull of gravity is also growing toward the light. In this activity, we changed that condition, forcing the beans to deviate from their normal course to get the light they needed.

The sprouts that grew the farthest and were closest to completing the maze had leggy stems that would not support growth upward to the last window. If I leave them a few more weeks, they could possibly grow along the bottom and then up the side of the box. I’ll have to wait and see.


©2013 Chicago Botanic Garden and my.chicagobotanic.org