Evening Primroses, Pumps, and Pollinators

Rick Overson is fascinated with insects—especially the kinds that love desert climates like in Arizona, where he grew up and earned his Ph.D. in biology. After completing a postdoctoral assignment in northern California, he decided it was time to get to know the little buggers even better, so Dr. Overson hopped on a plane for Chicago and stepped out into the subzero temperatures of the polar vortex to do just that.

PHOTO: Dr. Rick Overson with hawkmoth specimens.
Dr. Rick Overson with hawkmoth specimens

The devoted entomologist didn’t expect to see the insects in Chicago, but he was eager to join research at the Chicago Botanic Garden. A multidisciplinary team was assembling there to look for scent variations within Onagraceae, the evening primrose family, and connections from floral scent to insect pollinators and predators. The findings could answer questions about the ecology and evolution of all insects and plants involved. Overson is a postdoctoral researcher for the initiative, along with Tania Jogesh, Ph.D.

“Landscapes of Linalool: Scent-Mediated Diversification of Flowers and Moths across Western North America” is funded by a $1.54 million Dimensions in Biodiversity grant from the National Science Foundation. The project is headed by Garden scientists Krissa Skogen, Ph.D., Norman Wickett, Ph.D., and Jeremie Fant, Ph.D. It was developed from prior research conducted by Dr. Skogen on scent variation among Oenothera harringtonii plants in southern Colorado.

“For me, the most important thing coming out of this project is documenting and showing this incredible diversity that happens inside a species,” said Overson. “It’s vitally important for me to break down this idea of a species as a discrete unit. It’s a dynamic thing that is different in one place than another. That factors into conservation and our understanding of evolution.” In this case, he and his colleagues theorize that the evolution of the insect pollinators and predators is connected to the evolution of the scent of the plants.

PHOTO: Evening primrose in bloom on the plains of New Mexico.
Evening primrose in bloom on the plains of New Mexico. Photo by Dr. Rick Overson

The first two years of field work brought Overson back to his desert home. He traveled across Arizona, Utah, and nearby states with a group of about five scientists during summer months when the flowers were blooming. The team visited several populations each of 16 species of flower for a total of 60 locations. Overson and the team identified and documented the insects visiting the plants and compiled scent chemistry from the flowers. Their tool kit included a pump to pull the scent from a flower onto tiny polymer beads that held the scent inside of a vial. From there, they extracted the scent chemicals at the end of the research day or night. “It’s definitely the case that this pattern of scent variation inside a species is very common in this group,” he said of the team’s preliminary findings.

PHOTO: Hawkmoth on evening primrose.
A beneficial pollinator, the hawkmoth, visits an evening primrose (Oenothera harringtonii).

In the field they also took video recordings of pollinator behavior to see who visited which flowers and when. The pollinators, including hawkmoths and bees, follow scents to find various rewards such as pollen or nectar. The insects are selective, and make unique choices on which plants to visit.

Why do specific pollinators visit specific plants? In this case, the Skogen Lab is finding that it is in response to the scent, or chemical communication, each flower releases. “In the natural world those [scents] are signals, they are messages. Those different compounds that flowers are producing, a lot of them are cocktails of different types of chemicals. They could be saying very different things.”

PHOTO: Closeup of a wasp on a closed evening primrose bloom.
Nature is complicated. Here, a wasp lays eggs through a flower bud into a hidden Mompha moth inside. Its larvae will eventually destroy both the moth and the flower. Photo by Dr. Rick Overson

A destructive micromoth called a microlepidopteran (classified in the genus Mompha), has also likely learned how to read the scent messages of its hosts. The specialist herbivore lays eggs on plants leading to detrimental effects for seed production. The team’s field work has shown that Mompha moths only infect some populations of flowers. When and why did the flowers evolve to deter or attract all of these different pollinators? Or was it the pollinators who drove change?

At the Garden, Overson is currently focused on exploring the genomes, or DNA set, of these plants to create a phylogeny, which looks like a flow chart and reads like a story of evolution. “Right now we don’t know how all of these species are interrelated,” he explained. When the phylogeny is complete, they will have a more comprehensive outline of key relationships and timing than ever before. That information will allow scientists to determine where specific scents and other traits originated and spread. He will explore the evolution of important plant traits using the phylogeny including the color of the flowers and their pollinators, to answer as many questions as possible about relationships and linked evolutionary events.

In addition, the team is looking at population genetics so they can determine the amount of breeding occurring between plant locations by either seed movement or by pollinators. They will also look for obstacles to breeding, such as interference by mountain ranges or cities.

“Relationships among flowering plants and insects represent one of the great engines of terrestrial diversity,” wrote principal investigator Krissa Skogen, PhD, in a blog post announcing the grant.

The way that genes have flowed through different populations, or have been blocked from doing so over time, can also lead to changes in a species that are significant enough to drive speciation, or the development of new species, said Overson. “The big idea is that maybe these patterns that are driving diversity within these flowers could ultimately be leading to speciation.”

By understanding these differences and patterns, the scientists may influence conservation decisions, such as what locations are most in need of protection, and what corridors of gene flow are most important to safeguard.

PHOTO: Dr. Rick Overson in the field.
Dr. Rick Overson in the field

“We absolutely can’t live without plants or insects, it’s impossible,” remarked Overson. “Plants and insects are dominant forces in our terrestrial existence. Very few people would argue that we haven’t heavily modified the landscape where these plants and insects live. I think it is crucially important to understand these interactions for the sake of the natural world, agriculture and beyond.”

When Dr. Overson is taking a break from the laboratory, he visits the Desert Greenhouse in the Regenstein Center, which feels like home to him.


©2016 Chicago Botanic Garden and my.chicagobotanic.org

Science Scents

Summer romance is in the air on the shortgrass prairie of southeastern Colorado. Quite literally, the alluring fragrance of Harrington’s evening primrose (Oenothera harringtonii) wafts in the breeze when the plant blooms each evening. Insects from bees to moths follow the scent to the flower of their dreams.

Dr. Skogen sets up floral-scent collection equipment for a previous experiment at the Garden.
Dr. Skogen sets up floral-scent collection equipment for a previous experiment at the Garden.

The insect’s choice of flower is significant to the future of the plant species, according to Krissa Skogen, Ph.D., Chicago Botanic Garden conservation scientist. After a pollinator lands on a plant and sips its nectar, it may carry a copy of a plant’s genes, in the form of pollen, to the next plant it visits. That next plant may then take those genes to combine with its own to form a seed—creating the next generation of Harrington’s evening primroses.

How do pollinators select a flower? According to Dr. Skogen, floral scent heavily influences their choices in addition to floral color and size. “Floral scent is this fascinating black box of data that a lot of reproductive biologists haven’t yet collected,” she said.

Mothmatics
After studying the many pollinators of the evening primrose, from bees to moths, she found that two species of moths called hawkmoths—or more specifically, the white-lined sphinx moth (Hyles lineata) and the five-spotted hawkmoth (Manduca quinquemaculata)—are most effective. She told me that 30 percent more seeds are produced when a hawkmoth pollinates a plant rather than a bee.

Dr. Skogen and her team start their evening pollinator observations at dusk in Comanche National Grasslands.
Dr. Skogen and her team start their evening pollinator observations at dusk in Comanche National Grasslands.

“What’s really awesome about this system is that these hawkmoths can fly up to 20 miles in a night, while bees typically forage within one to five miles,” she added.

An insect so large it is often confused for a hummingbird, the brown-and-white hawk moths can carry genes between the widely spaced evening primrose populations.

A five-spotted hawkmoth visits Harrington’s evening primrose near Pueblo, Colorado.
A five-spotted hawkmoth visits Harrington’s evening primrose near Pueblo, Colorado.

In fact, Skogen has genetic data that support this idea—the roughly 25 populations she and her colleagues have studied throughout southeastern Colorado really act as two to three genetically, because the hawkmoths do such a great job moving pollen over long distances.

Making Sense of Scent
How do the hawkmoths use floral scent to decide which flower to visit? According to Skogen, they detect scent at a distance in the air with their antennae as they fly. (Once they get closer, flower color and size become more important in locating individual flowers.)

Skogen and her colleagues have determined that flowers in some populations smell very different from each other, and these differences in fragrance can be detected by humans. Fragrance combinations include green apple, coconut, jasmine, and even Froot Loops™.

Skogen’s theories suggest that differences in floral scent may direct female white-lined sphinx moths to the best host plants for their eggs, attract enemies (including seed-eating moths), reflect differences in soil, or the floral fragrance of other plant species flowering nearby.

The white-lined sphinx moth drinks nectar from Harrington’s evening primrose in Colorado.
The white-lined sphinx moth drinks nectar from Harrington’s evening primrose in Colorado.

Fielding Questions
What combinations of genes create the scents that best attract the hawkmoths? What do the genetic data of existing plants tell us about the direction genes have moved in the past? Are other insects, such as herbivores and seed predators, helping to move pollen or inhibiting reproduction?

These are the questions Skogen and her research team, including the Garden’s Jeremie Fant, Ph.D., and students Wes Glisson and Matt Rhodes, will investigate further. Late this summer and in future fieldwork, they will monitor the pollinators and collect floral and plant-tissue samples. 

Back in the Harris Family Foundation Plant Genetics Laboratory and the Reproductive Biology Laboratory at the Garden, they will compare the genetic data of these plants with the observed patterns of the pollinators, and other floral data. 

Each trip is another step closer to having a positive impact on the future of the state-imperiled evening primrose and its choice pollinators. This species is endemic, growing only in southeastern Colorado and northern New Mexico where the unique soils best suit its needs.

Learn more about Dr. Skogen’s work and watch a video.

Because the species grows in limited locations and is easily thwarted by the impacts of development, climate change, invasive weed species, and other intensifying threats, it’s especially important that its future generations are strong.

Skogen’s love for nature has been lifelong. As a child in Fargo, North Dakota, she enjoyed playing in unplowed prairies. Now, at the Garden, she visits Dixon Prairie as often as she can. “There is beauty in the natural distribution of species,” she said. “The prairie habitat is imprinted on me from those childhood experiences. It feels like home.”


©2013 Chicago Botanic Garden and my.chicagobotanic.org