Archives For invasive species

Unwanted wiggler discovered!

About a month ago, one of our horticulturists called me out to look at a groundcover planting that was being heavily disturbed by worms. At first look, I thought nothing of it—maybe it was increased surface worm activity from all the rain. A couple of weeks later, they were still very active, and the groundcover was actually floating on worm castings! We rolled it up to expose many worms. When I picked up a worm, it flipped out of my hand and wriggled away quickly, snake-like—not like a typical worm.

Since this activity seemed strange, I asked our senior ecologist to have a look at the crazy-acting worms. Coincidentally, he identified them as “crazy worms” (Amynthas agrestis), an invasive worm on his watch-for list that has never been found in Illinois. Samples were sent to the University of Illinois for confirmation, and the Illinois Department of Agriculture and Illinois Department of Natural Resources were informed. Our find has been confirmed—along with another find in DuPage County—and a potential find in Wilmette is being investigated. The crazy worm has been in the United States for many years in many of the southeastern states (and in the Smoky Mountains). In 2013, it was found in Wisconsin. DuPage and our find are the first confirmed for Illinois.

PHOTO: Crazy Worm (Amynthas agrestis).

Crazy worm (Amynthas agrestis)

Why is this worm bad?

  • They out-compete and push out our common European earthworms.
  • They multiply very quickly.
  • They devour soil organic matter and drastically change soil structure. This has a huge impact on forest ecosystems as well as on residential and urban ornamental plantings.

How do I identify the crazy worm?

  • They are found near the soil surface.
  • When touched, they respond immediately with a crazy flipping and jumping reaction.
  • They have a fast, snake-like movement.
  • Unlike a common European worm, they have a milky white flat band (clitellum).
  • They are 4 to 8 inches long.
  • A worm may lose its tail when handled.

What should I do if I think I have found the crazy worm?

  • Report the find to the Illinois Department of Natural Resources or Illinois Department of Agriculture.
  • To learn more about the crazy worm, just do a Google search on Amynthas agrestis (crazy worm or jumping worm).

Currently there are no treatments recommended for management of the crazy worm. Education and slowing the spread is the current course of action. The crazy worm’s primary means of spread is through the movement of plants with soil.


The Garden is a member of the Sentinel Plant Network, a group that unites botanic gardens in monitoring and providing education on exotic, invasive plant pests and pathogens, and works in partnership with the National Plant Diagnostic Network (NPDN).

If you are a plant and bug person like me, please consider becoming a NPDN First Detector and help be on the lookout for these exotic, invasive plant pests and pathogens. The NPDN offers an online training course to become a First Detector at firstdetector.org. It’s free, and upon completion, you even get a printable certificate!


©2015 Chicago Botanic Garden and my.chicagobotanic.org

Who’s On Air?

The Chicago Botanic Garden!

Cheri van Deraa —  January 2, 2014 — 2 Comments

On December 4, 2013, the Garden became both the first public botanic garden—and the first Chicago cultural institution—to host a live field trip, with approximately 1,000 students across the country using Google+ Connected Hangouts on Air.

PHOTO: The cover of the comic book.

Click here to download our slideshow of Nightmare on Ash Street for your classroom.

Our field trip topic was the impact of an invasive species on an ecosystem—specifically, emerald ash borer on our native ash trees. We wanted to make this complicated issue relevant and interactive for fifth- and sixth-grade students.

There are many fun things you can do with a live broadcast. The complex subject of balanced ecosystems and invasive species needed something unusual to capture students’ imaginations and attention. Our solution: begin our field trip with an original graphic comic about the emerald ash borer (EAB), and conclude by cutting down an infected tree during our broadcast. The live broadcast format also allowed our educators and horticulturists to go off script for some on-screen improvisation. 

Taking advantage of our medium, we presented from multiple locations—switching to read and show our comic book, present GIS (Geographical Information Systems) maps illustrating the spread of EAB in the U.S., view EAB larvae under a microscope in our science lab, and show how to diagnose the damage on—and treat (or remove)—an infected tree in the woods. The finale was cutting down the infected tree—live on camera! Before we signed off, we had an interactive Q&A between classrooms and Garden experts.

PHOTO: An auditorium of kids watches our broadcast on a projection screen on stage.

An auditorium of seventh graders in California tunes in to our broadcast.

A series of technical and dress rehearsals—one with the three participating classrooms—were necessary to troubleshoot the quirks of Google+ Hangout on Air. We chose three classrooms from across the country as active participants who were able to ask questions on camera, and be seen by our experts and others tuned in. (Viewing classrooms can still participate by typing in questions during the broadcast.)

From a technical standpoint, it was critical to know the limits of this technology. Google Hangouts currently allows up to ten screens to actively participate in an on-air event, and our entire program had to be done live, as Google Hangout on Air does not allow for streaming video. We used four of our allotted screens at the Garden: one for our graphic novel with narration, one in the lab, and two in the field. The screens were controlled through a central operator (me!) who acted as an on-air producer, switching from one screen to another to control the on-air experience. We used two smartphones to transmit from the field, and tested several models with different operating systems and carriers to maximize image quality (especially in the woods), and keep gaps in the transmission to a minimum. Macintosh computers provided the indoor Garden screens; one was dedicated to the microscope, and the other used its built-in camera. The computers were hard-wired to the Ethernet network to ensure the best transmission possible. Delays were a minor issue: even under the best of circumstances, we experienced a short lag switching from user to user. This was particularly problematic when fielding classroom questions.

While a virtual field trip is not a substitute for an actual visit to the Garden, it can offer something very different and unique, bringing together classrooms from all over the country. Virtual classrooms can also enrich classroom activities in schools facing budget shortfalls and scant funding for field trips. This new tool from Google can help us (and others) raise awareness about topics that affect us all from local to global impact. Follow us on Google+ to be alerted to our next virtual field trip and other Garden updates.

#ConnectedClassrooms   #VirtualFieldTrips


©2014 Chicago Botanic Garden and my.chicagobotanic.org