Archives For plant conservation biology

Rooting for Native Plants

Undercover Science

Julianne Beck —  October 25, 2016 — Leave a comment

Competition is heating up in the western United States. Invasive and native plants are racing to claim available land and resources. Alicia Foxx, who studies the interplay of roots of native and invasive plants, is glued to the action. The results of this contest, says the plant biology and conservation doctoral student at the Chicago Botanic Garden and Northwestern University, could be difficult to reverse.  

Cheatgrass, which is an aggressive, invasive plant with a dense root system, is in the lead and spreading quickly across the west. Native plants are falling in its wake—especially when it comes to their delicate seedlings that lead to new generations.

Foxx is one of the scientists working to give native plants a leg (or root) up. She hypothesizes that a carefully assembled team of native plant seedlings with just the right root traits may be able to work together to outpace their competition.

PHOTO: Alicia Foxx (left) participates in seed collection in Southeastern Utah.

Alicia Foxx (left) participates in seed collection in southeastern Utah.

“We often evaluate plants for the way they look above ground, but I think we have to look below ground as well,” she said. Foxx’s master thesis focused on a native grass known as squirreltail, and her hypothesis addressed the idea that the more robust the root system was in a native grass, the better it was at competing with cheatgrass. Now, “I’m looking more at how native plants behave in a community, as opposed to evaluating them one by one… How they interact with one another and how that might influence their performance or establishment in the Colorado plateau.”

In the desert climate, human-related disturbances such as mining, gas exploration, livestock trampling, or unnaturally frequent fires have killed off native plants and left barren patches of land behind that are susceptible to the arrival of cheatgrass.

PHOTO: Seedlings in the growth chamber.

Seedlings in the growth chamber

“Some of our activities are exacerbating the conditions [that are favorable for invasive plants]. We need to make sure that we have forage for the wildlife and the plants themselves, because they are important to us for different reasons, including the prevention of mudslides,” she said. “We are definitely confronted with a changing climate and it would be really difficult for us to reverse any damage we have caused, so we’re trying to shift the plant community so it can be here in 50 years.”

Garden conservation scientist Andrea Kramer, Ph.D. advises Foxx, and her mentorship has allowed Foxx to see how science theories created in a laboratory become real-life solutions in the field. “I think I’m very fortunate to work with Andrea, who works very closely with the Bureau of Land Management…it’s really nice to see that this gets replicated out in the world,” said Foxx. Seeds from their joint collecting trip in 2012 have been added to the Garden’s Dixon National Tallgrass Prairie Seed Bank.

Alicia Foxx loves to walk through the English Walled Garden when she steps away from her work.

In a way, Foxx is also learning from the invasive plants themselves. To develop her hypothesis, she considered the qualities of the invasive plants; those that succeeded had roots that are highly competitive for resources. After securing seeds from multiple sources, she is now working in the Garden’s greenhouse and the Population Biology Laboratory to grow native plants that may be up to the challenge. She is growing the seedlings in three different categories: a single plant, a group of the same species together, and a group of species that look different (such as a grass and a wildflower). In total, there will be 600 tubes holding plants. She will then evaluate their ability to establish themselves in a location and to survive over time.

PHOTO: Seedlings: on the right is a sunflower (Helianthus annuus) next to a native grass (Pascopyrum smithii).

On the right: a sunflower seedling (Helianthus annuus) next to a native grass (Pascopyrum smithii)

There has been very little research on plant roots, but Foxx said the traits of roots, such as how fibrous they are, their length, or the number of hair-like branches they form, tell us a lot about how they function.

“I’m hoping that looking at some of these root traits and looking at how these plants interact with one another will reveal something new or solidify some of the theories,” said Foxx.

She aims to have what she learns about the ecology of roots benefit restorations in the western United States. It is possible that her findings will shape thoughts in other regions as well, such as the prairies of the Midwest. Future research using the seeds Foxx collected could contribute to the National Seed Strategy for Rehabilitation and Restoration, of which the Garden is a key resource for research and seeds for future restoration needs.

The Chicago native has come a long way since she first discovered her love of botany during high school. After completing her research and her Ph.D., she hopes to nurture future scientists and citizen scientists through her ongoing work, and help them make the connections that can lead to a love of plants.


©2016 Chicago Botanic Garden and my.chicagobotanic.org

The National Parks provide dream vacations for us nature lovers, but did you know they also serve as vital locations for forward-thinking conservation research by Chicago Botanic Garden scientists?

From sand to sea, the parks are a celebration of America’s diversity of plants, animals, and fungi, according to the Garden’s Chief Scientist Greg Mueller, Ph.D., who has worked in several parks throughout his career.

“National Parks were usually selected because they are areas of important biodiversity,” Dr. Mueller explained, “and they’ve been appropriately managed and looked after for up to 100 years. Often times they are the best place to do our work.”

As we celebrate this centennial year, he and his colleagues share recent and favorite work experiences with the parks.

PHOTO: Dr. Greg Mueller in the field.

Dr. Greg Mueller working at Big Thicket National Preserve, Texas, in 2007.

Take a glimpse into the wilderness from their eyes.

This summer, Mueller made a routine visit to Indiana Dunes National Lakeshore to examine the impact of pollution and other human-caused disturbances on the sensitive mushroom species and communities associated with trees. “One of the foci of our whole research program (at the Garden) is looking at that juxtaposition of humans and nature and how that can coexist. The Dunes National Lakeshore is just a great place to do that,” he explained, as it is unusually close to roads and industry.

Evelyn Williams, Ph.D., adjunct conservation scientist, relied on her fieldwork in Guadalupe Mountains National Park to study one of only two known populations of Lepidospartum burgessii, a rare gypsophile shrub, during a postdoctoral research appointment at the Garden. “We were able to work with park staff to study the species and make recommendations for management,” she said.

PHOTO: Dr. Evelyn Williams in Guadalupe Mountains National Park during 2014 field work.

Dr. Evelyn Williams in Guadalupe Mountains National Park during 2014 field work. Photo by Adrienne Basey.

As a Conservation Land Management intern, Coleman Minney surveyed for the federally endangered Ptilimnium nodosum at the Chesapeake and Ohio Canal National Historical Park earlier this year. “The continued monitoring of this plant is important because its habitat is very susceptible to invasion from non-native plants,” explained Minney, who found the first natural population of the species on the main stem of the Potomac River in 20 years.

PHOTO: Harperella (Ptilimnium nodosum).

Harperella (Ptilimnium nodosum) grows on scour bars of rivers and streams. Photo by Coleman Minney.

According to conservation scientist Andrea Kramer, Ph.D., “In many cases, National Parks provide the best and most intact examples of native plant communities in the country, and by studying them we can learn more about how to restore damaged or destroyed plant communities to support the people and wildlife that depend upon them.”

The parks have been a critical site for her work throughout her career. Initially, “I relied on the parks as sites for fieldwork on how wildflowers adapt to their local environment.”

Today, she is evaluating the results of restoration at sites in the Colorado Plateau by looking at data provided by collaborators. Her data covers areas that include Grand Canyon National Park, Capitol Reef National Park, and Canyon de Chelly National Monument.

Along with colleague Nora Talkington, a recent master’s degree graduate from the Garden’s program in plant biology and conservation who is now a botanist for the Navajo Nation, Dr. Kramer expects the results will inform future restoration work.

PHOTO: Dr. Andrea Kramer at Arches National Park.

Dr. Kramer collects material from Arches National Park as a part of her dissertation research in 2003.

At Wrangell–St. Elias National Park and Preserve in Alaska, Natalie Balkam, a Conservation Land Management intern, has been hard at work collecting data on vegetation in the park and learning more about the intersection of people, science, and nature. “My time with the National Park Service has exposed me to the vastly interesting and complex mechanics of preserving and protecting a natural space,” she said. “And I get to work in one of the most beautiful places in the world—Alaska!”

PHOTO: The view from survey work in Elodea, part of the Wrangell–St. Elias National Park Preserve in Alaska.

The view from survey work in Elodea, part of the Wrangell–St. Elias National Park Preserve in Alaska. Photo courtesy National Park Service.

The benefits of conducting research with the National Parks extend beyond the ability to gather high-quality information, said Mueller. Parks retain records of research underway by others and facilitate collaborations between scientists. They may also provide previous research records to enhance a specific project. Their connections to research are tight. But nothing is as important as their ability to connect people with nature, said Mueller. “That need for experiencing nature, experiencing wilderness is something that’s critical for humankind.”

For research and recreation, we look forward to the next 100 years.


©2016 Chicago Botanic Garden and my.chicagobotanic.org