Becoming a Plant Sleuth for Plants of Concern

Last year, with great anticipation, I became a plant sleuth. Tired of my relative ignorance of plants, I wanted to learn more about them and become more productive while being outdoors, which I am—a lot. So I joined Plants of Concern as a volunteer.

Based at the Chicago Botanic Garden, Plants of Concern (POC) was launched in 2001 by the Garden and Audubon–Chicago Region, supported by Chicago Wilderness funding. The program brings together trained volunteers, public and private land managers, and scientists, with the support of federal, state, and local agencies. For more than 15 years, the POC volunteers—a generally mild-mannered but formidable force of citizen scientists—have monitored rare, threatened, and endangered plant populations in our region to assess long-term trends. 

PHOTO: On this foray with Plants of Concern, we marked endangered plants with flags.
On this foray with Plants of Concern, we flagged and counted targeted plants.

Broadly speaking, the data we plant detectives collect provides valuable information. Land managers and owners can use it to thoughtfully and effectively manage land, protecting ecosystems that have helped to support us humans. Scientists and students can use the data to help them understand rare-species ecology, population genetics, and restoration dynamics. The implications are significant, with climate change an important factor to consider in altered or shifting plant populations.

I quickly discovered that many POC volunteers are way more plant savvy than I am. Fortunately for me, the organization welcomes people of all knowledge levels. Our goal is to gather information about specific plant populations, ultimately to protect them against the forces of invasive plant species and encroaching urbanization. And our work is paying off. Some POC-monitored plant populations are expanding—reflected in the removal of those species from state lists of threatened and endangered species.

We are (mostly) unfazed

Yes, we POC volunteers are a hardy lot. Stinking hot, humid days on the sand dunes near Lake Michigan or the Midewin National Tallgrass Prairie? We drink some water and slap on sunscreen. Steep ravines with loose soil and little to hang onto? Bring it on! An obstacle course of spider webs? No prob—well actually, those are a real drag. Last time I wiped a web from my sweaty face I muttered, “There ought to be a word for the sounds people make when this happens.” (Oh, right, there is: swearing!) But webs slow us down for just a few seconds before we resume the business at hand.

PHOTO: Amy Spungen out in the field, volunteering for Plants of Concern.
Author’s note: Some projects are a little more involved than others. This was one of those.

That business is hunting down and noting targeted plants, and continuing to monitor them over time. Our tools are notebooks, cameras, and GPS mapping equipment. In northeast Illinois and northwest Indiana, we volunteers, along with Garden scientists and staff from partner agencies, have monitored 288 species across 1,170 plant populations at more than 300 sites, from moist flatwoods to dry gravel prairies to lakefront beaches and sand savannahs. Collectively, since Plants of Concern began, we have contributed 23,000 hours of our time in both the field and office.

“Northeastern Illinois is incredibly biodiverse, and some people are surprised to learn that,” says Rachel Goad, who became manager of the program in 2014, after earning a master’s degree in plant biology from Southern Illinois University–Carbondale. “There are so many interesting plant communities and lots of really neat plants. For people who want to learn more about them and contribute to their conservation, Plants of Concern is a great way to do that. We rely on interested and passionate volunteers—we would not at all be able to cover the area of the Chicago Wilderness region without them.”

From the minute I met up with a POC group during my first foray last October at Illinois Beach State Park, I was hooked. Though I often feel like a dunderhead as I bumble around hunting for my assigned plants, wondering why so many plants look so much like other plants, I love it. One reason is the other, more experienced volunteers and staff leaders, who generously help me as I ask question after question after question.

PHOTO: Plants of Concern foray leader Jason Miller: a man of ultimate patience.
Plants of Concern foray leader Jason Miller: a man of ultimate patience—with me.

Some of us volunteers are walking plant encyclopedias, while others (that would be me) have been known to call out, “Here’s a dwarf honeysuckle!” only to have foray leader Jason Miller, patience personified, respond gently, “Actually, that’s an ash seedling.”

            “Hey Jason,” I say a couple of weeks later, trying to look unconcerned. “Do you guys ever fire volunteers?”

            “Yes, but it’s rare,” he replies. “Of more than 800 volunteers over all the years, maybe five at most—and not recently—were dropped from the program.” He indicates that it’s more a mismatch of interests than a few flubbed newbie I.D.s that can lead to that very rare parting of ways. Miller also acknowledges that some plants are especially tricky, such as sedges (Carex spp.) and dwarf honeysuckle (Diervilla lonicera). “Some species are straightforward,” he says, “and others are harder to monitor.”

I’m not hopeless—I’m just growing

I decide to interpret my POC foibles as “opportunities for growth,” since slowly but surely, I am starting to catch on. The information sheets distributed as we gather before a foray are making more sense to me. I am getting better at noticing the tiny serrated edges of a leaf, or compound rather than simple umbels, or any number of other subtle ways plants may distinguish themselves from others.

That gradual but steady learning curve fits with what Goad describes as “the most critical characteristic we look for in volunteers: someone who really wants to learn.” She adds that diversity among POC volunteers strengthens the program as a whole, helping to build a “constituency for conservation” among people not traditionally associated with environmental activism.

PHOTO: Plants of Concern volunteers watch a presentation before heading out on foray.
Volunteers get a debriefing before heading out on a foray. Newbies go with experienced volunteers.

Goad and her staff, which includes research assistants Miller, Kimberly Elsenbroek, and Morgan Conley, work to match volunteers with something that fits their level of expertise. This “hyper-individualized” approach to training POC volunteers can limit the number of participants per year, currently about 150 (a year-end tally firms up that number). “We tend to fill up our new volunteer training workshops, which means that our staff is always working at capacity to get those folks up and running,” says Goad. “I encourage people to sign up early if they know they are interested.”

Another challenge for managing the volunteer program, Goad adds, is that “any time you have a whole bunch of different people collecting and sending in data, there has to be a really good process for checking it and cleaning it and making it useful.” Over the years, the program has improved its volunteer training and data processing so that errors are minimized.

Get ready, get set—learn!

Miller was majoring in environmental studies at McKendree University when he came to POC in 2013 as an intern. Now, among other things, he’s in charge of volunteers at the Openlands Lakeshore Preserve. Like Goad, he says the main requirement in a volunteer is a willingness to learn. “We want someone who is interested in plants and their habitats,” he said. “If so, whenever you can help us out, great! We realize you’re giving your time to do this.”

Goad hopes to expand POC into other parts of Illinois over the next decade. “There are populations across the state that should be visited more regularly,” she says. “We do a lot with the resources we have, but it would be great to expand, and to do so, we need to continue to be creative about funding.” With partners that include forest preserve districts, county conservation districts, many land trusts, and nonprofit agencies that own land—and with its knowledge about challenged plant populations—POC is uniquely positioned to help facilitate collaboration.

PHOTO: Plants of Concern volunteers.
The world’s best volunteer group

Whatever the time frame, wherever Plants of Concern volunteers are found, the hunt is on. Some days are glorious for us plant sleuths, such as my first foray last fall. We hiked over the dunes, Lake Michigan sparkling beside us, the cloudless sky brilliant blue. A light breeze kept us cool as we spread out, flagging the targeted plant—the endangered dune willow (Salix syrticola)—which was readily apparent and accessible. Then there are days like one this past June, when the sun beat down over a hazy Lake Michigan, humidity and temperatures soared, and my assignment was a steep, prolonged scramble over ravines to find and flag my elusive target, the common juniper (Juniperus communis). By the end of it I was, to coin a phrase, literally a hot mess—but a happy and triumphant one, for I had indeed been able to plant a few flags.

PHOTO: planting flags on a foray to monitor slipper orchids.Perhaps it’s time for you to sleuth around and plant a few flags, too! Visit Plants of Concern and find out how to join.


Plants of Concern is made possible with support from the U.S. Department of Agriculture Forest Service at Midewin National Tallgrass Prairie, Forest Preserves of Cook County, Openlands, Nature Conservancy Volunteer Stewardship Network, National Fish and Wildlife Foundation, and Chicago Park District.

©2016 Chicago Botanic Garden and my.chicagobotanic.org

A 20-Year Legacy of Conservation Conversations

For more than two decades, leaders in conservation science have come to the Chicago Botanic Garden each summer to discuss timely topics from monarch butterflies to assisted plant migration.

Butterfly on Liatris
Butterfly on Liatris

Seeds will be planted again on Monday, June 13, when regional stewardship professionals, academics, restoration volunteers, and interns gather for the Janet Meakin Poor Research Symposium. The annual day of lectures and discussions covers the latest findings in conservation research and best practices in restoration, while inspiring conversations and new partnerships.

“I think the science that pertains to land management is always evolving, and therefore best practices are always evolving,” said Kay Havens, Ph.D., Medard and Elizabeth Welch senior director, Ecology and Conservation, and the moderator of the symposium.

The 2015 symposium focused on restoration solutions for large-scale implementation, and this year’s theme, Seed Sourcing for Restoration in a Changing Climate, builds on the concept of seed management. “It focuses on conservation research and restoration and tries to make links with the land management community—so not just reporting the science but also reporting how that could influence land management,” explained Dr. Havens. This subject is especially timely, according to Havens, as it follows the first year of the National Seed Strategy for Rehabilitation and Restoration. The Garden has played a key role in establishing the seed strategy, which will create a network to ensure native seeds are available in restoration efforts, especially in fire-ravaged western rangelands.

The Dixon Prairie in July
The Dixon Prairie in July

“I think the need for restoration increases annually,” said Havens. “We are facing a more and more degraded planet every year, and as the climate changes and natural disasters like hurricanes and floods increase, the need for restoration increases.”

Read more about the symposium or register online for Seed Sourcing for Restoration in a Changing Climate today.


©2016 Chicago Botanic Garden and my.chicagobotanic.org

Between a Rock and a Future

A pretty little iris growing in the mountainous rocky outcrops of Jerusalem is the focus of a research collaboration stretching over 6,000 miles.

Scientists at the Chicago Botanic Garden and Jerusalem Botanical Gardens have combined their strengths to study the natural population structure, or remaining genetic diversity, of the rare Iris vartanii. What they have discovered may save the species, and others like it, into the future.

The finicky wildflower exists in just 66 locations in Israel’s Mediterranean ecosystem—a dangerously low number. New road construction, urban expansion, and even afforestation in the area have reduced the availability of its natural habitat, fueling the crisis. For a plant that is endemic to, or only lives in, one narrow region, that spells trouble.

PHOTO: Iris vartanii ©Dr. Ori Fragman-Sapir
Iris vartanii Photo ©Dr. Ori Fragman-Sapir

“Whenever you have a rare plant, you always have concern that as diversity starts to go down, the plant becomes more and more endangered,” explained Garden volunteer and molecular biologist Eileen Sirkin, Ph.D. “The idea of diversity is that maybe one plant is more drought tolerant, another is more flood tolerant, and another is more wind tolerant, for example, so no matter what the conditions, there will be some survivors. As you narrow that, you are more and more in danger of losing that species.”

Do the existing plants contain adequate genetic diversity? And to sustain the species, how many plants are enough? These are the central questions.

Gaining a Foothold

The scientific partnership between the two gardens was forged when Jerusalem Botanical Gardens’ Head Scientist Ori Fragman-Sapir, Ph.D., who has monitored the species and studied its demography in the field, visited the Chicago Botanic Garden and met with Chief Scientist Greg Mueller, Ph.D. The two quickly saw an opportunity to combine Dr. Fragman-Sapir’s research with the genetic capabilities of the Garden to answer those critical questions.

“Conservation genetics is one of the core strengths of our science program,” said Dr. Mueller.  “There are few other botanical institutions that have this expertise, especially internationally, so we are happy to collaborate on interesting and important plant conservation projects like this one.”

“Conservation genetics is one of the core strengths of our science program,” said Dr. Mueller. “There are few other botanical institutions that have this expertise, especially internationally, so we are happy to collaborate on interesting and important plant conservation projects like this one.”

It wasn’t long before Fragman-Sapir began shipping leaf samples to the Garden’s molecular ecologist, Jeremie Fant, Ph.D. Together with his dedicated volunteer Dr. Sirkin, Dr. Fant set to work extracting data from the samples and documenting DNA fingerprints for each plant. Once they had a large enough data set, they compared and contrasted the findings—looking for similarities and differences among the plants’ genetic compositions.

Gaining Altitude

To give scientists a point of comparison, Fragman-Sapir shared tissue samples from five populations (geographically separated clusters of plants) of a more commonly occurring related species, Iris histrio. By also documenting the DNA fingerprints of those plants, which grow in the surrounding area, but unlike Iris vartanii are not rare, Fant was able to determine how much diversity is needed to sustain the species.

PHOTO: Volunteer Dr. Eileen Sirkin
Dr. Eileen Sirkin volunteers in the laboratory.

Although the study subject is far away from the Garden, its challenges hit close to home. In 2013, Fant and Sirkin published findings from a similar study on a rare plant found at Illinois State Beach Park, Cirsium pitcheri. For that initiative, they examined the DNA of plants from a restored site at the beach and compared them to the DNA of naturally occurring plants across the range, measuring diversity.

“We’re always working with rare and endangered species, and we collaborate with different people around the world to answer those questions,” explained Sirkin.

The Summit

After completing a statistical analysis of Iris vartanii’s DNA fingerprints, Fant made several encouraging conclusions but also issued an alert for continued attention.

The rare species’ genetic diversity was similar to that of Iris histrio. “This does tell us that genetic diversity in Iris vartanii is not likely an issue,” said Fant, who was not surprised by the conclusion. “Genetic diversity of any population is determined by the origins of the species, the age of the population, and proximity to the site of origin,” he explained. “As both species likely arose locally [from Jerusalem northward to the Galilee and further on] and have been around for a very long time, they possess similar levels of genetic diversity.”

PHOTO: Dr. Jeremie Fant.
Conservation scientist Dr. Jeremie Fant

Especially encouraging was that each Iris vartanii population had significant differences in their genes, likely a result of their longtime separation. The findings highlight that it is all the more valuable to conserve each population for their potential to contribute unique genes to future plants, according to Fant.

Although many populations showed high diversity and low inbreeding, which is preferred, others showed the reverse, increasing their potential risk of extinction. The latter group, explained Fant, may benefit from extra special monitoring and care.

To conserve the existing populations, attention will need to be given to their surrounding natural areas, explained Sirkin. “If you find a species that people like and you study it and say we need to do all these things to save it, you are not just saving one plant, you are saving an ecosystem, including all the other plants, insects, other invertebrates, lizards, birds, and whatever else is involved in that ecosystem,” she said.

The findings and recommendations give land managers a clear direction for their conservation efforts, all because of one eye-catching plant that told the story of many.


©2015 Chicago Botanic Garden and my.chicagobotanic.org

Working to restore a rainbow of wildflowers in the Colorado Plateau

I’m a conservation scientist here at the Chicago Botanic Garden. I have an incredible job that allows me to work with many wonderful graduate students and a team of researchers to study ways to restore natural areas in the Colorado Plateau.

If you’ve ever visited national parks like the Grand Canyon or Arches, you’ve experienced at least some of what the Colorado Plateau (also known as the Four Corners region) has to offer. It includes more than 80 million acres across Utah, Colorado, New Mexico, and Arizona—and the largest concentration of national parks in the country.

PHOTO: Andrea Kramer in the Colorado plateau.
Our research team heads out across a recently-burned area in search of data.

Although beautiful, the Colorado Plateau’s natural areas are facing many threats, including wildfires, a changing climate, and destructive invasive species such as cheatgrass (Bromus tectorum) and Russian knapweed (Acroptilon repens). Working with many partners, including the Bureau of Land Management, we are studying which native plants may be best able to handle these growing threats (we refer to them as “native winners”). The ultimate goal is to help make restoration of these plants and habitats as effective as possible in order to maintain healthy natural areas that support wildlife and pollinators, and help keep our air and water clean.

PHOTO: Andrea Kramer at Rio Mesa.
Another beautiful day at Rio Mesa

This is no small task. The invasive species that the native plants are up against are very impressive. For example, Russian knapweed is allelopathic (prevents other plants from growing nearby), and it has roots that can grow more than 20 feet deep, seeking the water table. Fortunately, some native species are also able to grow in these conditions, and some even appear to be evolving and adapting to be better competitors.

Three Northwestern University graduate students are working with me. Master’s student Nora Talkington is testing how different populations of a native grass are able to compete with Russian knapweed, while doctoral student Alicia Foxx is researching how different root structures of native plants help them compete with invasive species. Master’s student Maggie Eshleman is studying six native wildflower species including the smallflower globe mallow (Sphaeralcea parvifolia), which has tiny, fiery orange flowers. These wildflowers are likely “native winners” and are strong candidates for increased use when restoring habitat in the Colorado Plateau.

A rainbow of wildflowers for restoration:

  • Tansy aster (Machaeranthera canescens): This purple-flowered plant is good for pollinators, one of the few plants that flowers late in the season, and on top of that, is really good at growing in sites that need to be restored.
  • Woolly plantain (Plantago patagonica): This cute little annual plant is often the only thing we find flowering and producing seeds during extreme drought years. It is very impressive!
  • Bee plant (Cleome lutea): This annual plant has gorgeous yellow flowers. It’s good at growing in disturbed areas and, as its name indicates, is a great forage plant for bees.
PHOTO: Cleome lutea.
Bee plant (Cleome lutea) by Andrea Kramer
PHOTO: Sphaeralcea parvifolia.
Smallflower globe mallow (Sphaeralcea parvifolia) by Andrea Kramer
PHOTO: Machaeranthera canescens.
Tansy aster (Machaeranthera canescens or Dieteria canascens) by Maggie Eshleman
PHOTO: Plantago patagonica.
Woolly plantain (Plantago patagonica) by Andrea Kramer

This summer was a busy one. My students and I spent many weeks in the Colorado Plateau working with collaborators to collect seeds (as part of Seeds of Success collectors—a national native seed collection program). These seeds are now being used for studies in the Garden’s research greenhouses and growth chambers, and at study plots in Utah, Arizona, and Colorado. In the Garden’s Daniel F. and Ada L. Rice Plant Conservation Science Center, we are also using incubators to create spring- and summer-like conditions that will help us understand when and why seeds of certain species are able to germinate and grow. This is an important aspect of ultimately being able to restore species in a degraded habitat.

PHOTO: La Sal mountains in the background; the plains abloom in May.
La Sal mountains in the background; the plains abloom in May

How cool is it to be able to take research that’s been done on a small scale and actually apply it to the real world? I feel so lucky to be able to do this work, and being here at the Chicago Botanic Garden has allowed me to build long-term partnerships that investigate the application of research, rather than just focusing on publishing it. Stay tuned for updates on how these native winners perform.


This post was adapted from an article by Nina Koziol that appeared in the winter 2014 edition of Keep Growing, the member magazine of the Chicago Botanic Garden.

©2014 Chicago Botanic Garden and my.chicagobotanic.org