Archives For Plant Science & Conservation

Conserving plants is one of the most significant challenges of our time—and a major focus at the Chicago Botanic Garden. From studying soil to banking seeds, from restoring habitats and protecting endangered plant species to developing new ones, Garden scientists are fighting plant extinction, pollution, and climate change through diverse and exciting research.

Interested in new perennials for your garden? How about ones that have proven to be exceptional—fragrant, colorful, drought tolerant, resistant to disease and pests, and hardy in the Midwest and similar climates? Just turn to our scientists, who have done the legwork for you through the Chicago Botanic Garden’s plant breeding and evaluation programs.

Breeding and selecting new perennials is a long, intense process that begins with cross-pollinating two plants, or moving pollen by hand from the flowers of one plant to the flowers of another plant with different traits. The two related plants—which ideally will produce exceptional offspring—are selected for breeding based on desirable attributes.

PHOTO: Jim Ault poses in a bed of bright pink- and purple-blooming asters he developed at the Garden.

Jim Ault, Ph.D., with Symphyotricum (aster) hybrids developed at the Garden

PHOTO: A closeup of the rich purple buds of Twilite false indigo.

Twilite false indigo (Baptisia × variicolor ‘Twilite’)

PHOTO: Using tweezers, Jim Ault hand-pollinates a Baptisia.

Pollinating Baptisia

“In the best-case scenario, from the first cross to the final plant worthy of introduction, it takes about seven years, maybe eight to ten. I have to think long-term in generation time, from seed to first bloom to maturity,” said Jim Ault, Ph.D., plant introduction manager and Gaylord and Dorothy Donnelley Director of Ornamental Plant Research.

The most promising new plants are propagated by cuttings or tissue culture and then scrutinized by the Garden’s Plant Evaluation Program, managed by Richard Hawke. He compares the plants to cultivars and species already in the trade to ensure that the plants from the breeding program are unique and worthy of introduction. Hawke also recommends plants for use as parents in the breeding program.

PHOTO: Richard Hawke crouches down, examining the progress of a cultivar planted at the Garden.

Richard Hawke at work

“The public can see about 80 percent of the breeding program plants as we are growing them in the ground in the evaluation gardens,” Dr. Ault said. Plants with the highest marks move to licensed commercial nurseries that also conduct field and container trials and then propagate the new plants for sale to home gardeners and the horticultural trade.

In recent years, popular offerings from the breeding program have included the first orange coneflower ever released, Art’s Pride coneflower (Echinacea ‘Art’s Pride’), and Forever Pink phlox (Phlox ‘Forever Pink’). “The interest in ‘Forever Pink’ has exploded,” Ault said. “It has three weeks of peak bloom in late May to early June and then it repeat-blooms on about 10 percent of the plant all summer and fall. It’s compact and, unlike other summer-blooming phlox, has had no powdery mildew whatsoever.”

You can expect to see more noteworthy perennials in coming years. Ault is hybridizing several types, including ground-cover phlox, asters, and other genera. “Something really wonderful should bloom this spring out of the hundreds of new seedlings that we’re growing,” said Ault.

Visit chicagobotanic.org/research/environmental/breeding for a full list of the perennials released commercially through the Garden’s Plant Breeding Program.

PHOTO: A closeup of the unusual bright orange color of Art's Pride coneflower.

Art’s Pride coneflower (Echinacea ‘Art’s Pride’)

PHOTO: A bed of a dozen plantings of Forever Pink phlox in full bloom.

Forever Pink phlox (Phlox ‘Forever Pink’)

PHOTO: Tidal Pool prostrate speedwell.

Tidal Pool prostrate speedwell (Veronica ‘Tidal Pool’)

Support for the plant evaluation program is provided by the Bernice E. Lavin Evaluation Garden Endowment, the Woman’s Board Endowment for Plant Evaluation Research and Publication, and the Sally Meads Hand Foundation.

This post was adapted from an article by Nina Koziol that appeared in the spring 2014 edition of Keep Growing, the member magazine of the Chicago Botanic Garden.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

What if the next plant conservation project wasn’t down the street, or in the neighboring county, or far away in the wilderness? What if it was right above your head, on your roof? In our increasingly urban world, making use of rooftop space might help conserve some of our precious biodiversity in and around cities.

PHOTO: Ksiazek bending to examine blooming sedums on Chicago's City Hall green roof.

The green roof on Chicago’s City Hall supports an amazing diversity of hundreds of plant species.

Unfortunately, native prairie plants have lost most of their natural habitat. In fact, less than one-tenth of one percent of prairies remains in Illinois—pretty sad for a state whose motto is the “Prairie State.” As a Chicago native, I found this very alarming. I thought, “Is it possible to use spaces other than our local nature preserves to help prevent the extinction of some of these beautiful prairie plants?” With new legislation at the turn of the century that encouraged the construction of many green roofs in Chicago, it seemed like the perfect place to test a growing hypothesis I had: maybe some of the native prairie plants that were losing habitat elsewhere could thrive on green roofs.

This idea brought me to the graduate program in Plant Biology and Conservation, a joint degree program through Northwestern University and the Chicago Botanic Garden. Here, I am investigating the possibility that the engineered habitats of green roofs can be used to conserve native prairie plants and the pollinators that they support.

PHOTO: Ksiazek examines plants in a prairie, taking data.

Which plant are you? In 2012, I surveyed natural prairies to determine which species live together.

Since I began the program as a master’s degree student in 2009, I’ve learned a lot about how native plants and pollinators can be supported on green roofs. For my master’s thesis, I wanted to see if native wildflowers were visited by pollinators and if they were receiving enough high-quality pollen to makes seeds and reproduce. Good news! The nine native wildflower species I tested produced just as many seeds on roofs as they normally do on the ground, and these seeds are able to germinate, or grow into new plants.

Once I knew that pollinator-dependent plants should be able to reproduce on green roofs, I set out to learn how to intentionally design green roofs to mimic prairies for my doctoral research. I started by visiting about 20 short-grass prairies in the Chicago region to see which species lived together in habitats that are similar to green roofs. These short-grass prairies all had very shallow soil that drained quickly and next to no shade; the same conditions you’d find on a green roof. 

PHOTO: Ksiazek poses for a photo among prairie grasses.

Plant species from this dry sand prairie just south of Chicago might also be able to survive on green roofs in the city.

PHOTO: Plant seedling.

A tiny bee balm (Monarda fistulosa) seedling grows on the green roof at the Plant Science Center at the Chicago Botanic Garden.

PHOTO: Hand holding a seedling; paperwork is in the background, along with a seedling tray.

One of my experiments involves planting tiny native seedlings into special experimental green roof trays. They’re now on top of the Plant Science Center. Go take a look!

I’m now setting up experiments that test the ability of the short-grass prairie species to live together on green roofs. Some of these experiments involved using seeds as a cheap and fast way of getting native plants on the roof. Other experiments involved using small plant seedlings that may have a better chance of survival, although, as any gardener could tell you, are more expensive and labor intensive than planting seeds. I will continue to collect data on the survival and health of all these native plants at several locations, including the green roof on the Daniel F. and Ada L. Rice Plant Conservation Science Center at the Garden.

Ideally, I would continue to collect data on these experimental prairies to see how they develop over the next 50 years and learn how the plants were able to support native insects, such as pollinating bees and butterflies. But I didn’t want my Ph.D. to last 50 years so instead, I decided to collect the same type of data on green roofs that have already been around for a few decades. Because the technology is still relatively new in America, I had to go to Germany to collect this data, where the history of green roofs is much older. Last year, through a Fulbright and Germanistic Society of America Fellowship, I collected insects and data about the plant communities on several green roofs in and around Berlin and learned that green roofs can support very diverse plant and insect communities over time. We scientists are just starting to learn more about how green roofs are different from other urban gardens and parks, but it’s looking like they might be able to contribute to urban biodiversity conservation and support.

PHOTO: Ksiazek collects insects from traps on a green roof in Berlin.

I collected almost 10,000 insects on green roofs in and around Berlin, Germany in 2013.

PHOTO: Closeup of a pinned bee collected from a green roof in Berlin.

I found more than 50 different species of bees on the green roofs in Germany.

Now that I’m back in Chicago and have been awarded research grants from several institutions, I’m setting up a new experiment to learn about how pollinators move pollen from one green roof to another. I’ll be using a couple different prairie plants to measure “gene flow,” which basically describes how pollen moves between maternal and paternal plants. If I find that pollinators bring pollen from one roof to anther, this means that green roofs might be connected to the large urban habitat, rather than merely being isolated “islands in the sky,” as some people have suggested. If this is true, then green roofs could also help other plants in their surroundings—more pollinating green roof bees could mean more fruit yield for your nearby garden.  

PHOTO: Aerial view of Chicago at Lake Michigan, with green rectangles superimposed over building which house green roofs.

The green boxes represent green roofs near Lake Michigan. How will pollinators like bees, butterflies, and moths move pollen between plants on these different roofs? This summer, I will be carrying out an experiment to find out.

There are still many questions to be answered in this new field of plant science research. I’m very excited to be learning so much through the graduate program at the Garden and to be collaborating with innovative researchers both in Chicago and abroad. If you’re interested in keeping up with my monthly progress, please visit my research blog at the Phipps Conservatory Botany in Action Fellows’ page

PHOTO: A wasp drinks water from a flower after rain.

A friendly little wasp enjoys the native green roof plants on a rainy day in Paris.

And if you haven’t already done so, I hope you’ll get a chance to visit the green roof at the Plant Science Center and see how beautiful plant conservation happening right over your head can be! 

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Pioneering Woodland Restoration

Undercover Science

Julianne Beck —  May 10, 2014 — 1 Comment

Tranquil, peaceful, and serene are words often associated with the McDonald Woods, which wrap around the northeastern edge of the Chicago Botanic Garden. But to Jim Steffen, senior ecologist at the Garden, the oak woodland is a bustling center for natural processes and species, and may hold answers to unsolved scientific questions.

PHOTO: Multi-flowered milkweed blooms.

Purple milkweed (Asclepias purpurascens) blooms in the McDonald Woods.

“Nothing out there exists by itself. It’s all a network,” said Steffen. Since he arrived at the Garden 25 years ago, he has used his powers of observation to document, study, and breathe life into the systems that sustain a healthy woodland.

In the late 1800s, most area native oaks were cleared for settlement, leaving behind a fragmented and altered landscape. Invasive plants, including buckthorn and nonnative critters, such as all of our present-day earthworms, moved in. The climate began to change. While many may have thrown up their hands and walked away from this complex puzzle, Steffen saw a treasure.

Taking Flight

At age 15, he began to explore the natural world in earnest and to grow the insight that guides him today. After taking a course in his community, he was federally licensed to band birds for research, a pursuit he followed for another 40 years. As he searched for hawks, owls, and other birds of prey, Steffen couldn’t help but notice the activity beneath his feet. Among the fallen leaves were scuttling rodents, insects, and blooming plants. He realized their presence was integral to the entire community of life in the woods.

PHOTO: A clump of blooming sedge grass.

Carex bromoides is one of many sedge plants essential to the woodland ecosystem.

“I started getting more into how those things are related rather than just narrowly focusing on the birds or the plants,” he said.

Steffen developed a broad ecological background as he pursued his education and worked toward a career in conservation science. He was hired to manage 11 acres of woods alongside a nature trail at the Garden. Now, that management responsibility includes more than 100 acres.

Master Plan

Although he does not expect to recreate the exact natural community of the past, Steffen does aim to grow an oak woodland of today. “My goal is to increase the native species diversity and improve the ecological functioning that is going on in the Woods,” he said.

Early in his career, he successfully advocated to expand the managed area to include adjacent acres. His management activities and detailed inventory work has grown the number of species there from 223 to 405. Of those species, 345 are native to the region.

PHOTO: The woods in winter, showing both cleared, walkable woods and unpassable buckthorn-infested area.

Invasive buckthorn plants are interspersed among the trees on the right, while they have been removed on the left.

The leaf canopy of the second-growth woodland was nearly 100 percent sealed when he arrived. It is now more open, allowing sunlight to punctuate the ground—encouraging the reproduction of oak species and promoting the flowering and seed-set of the native grasses, sedges, and wildflowers. The rewards of his work? Less carbon being released from the soil, improved water retention and nutrient cycling, and a place to bolster native species of plants and animals.

PHOTO: Jim Steffen in full protective gear including helmet and goggles, up in a tree with a chainsaw.

Jim Steffen begins to remove an ash tree infested with the invasive emerald ash borer insect.

Each season brings new challenges. This winter, Steffen, his crew, and hired contractors carefully removed nearly 600 ash trees killed by emerald ash borers, cleared three acres of mature buckthorn, and conducted a six- to seven-acre controlled burn.

“It’s a difficult thing to do,” he said of oak woodland management. Steffen is grateful for each helping hand. “I’d say I’d be about ten years behind if it hadn’t been for my dedicated volunteers who help with the physically demanding work.”

Springing Into Action

This spring, Steffen and his team will begin to collect seed from more than 120 native plants they nurture in the Garden nursery and from dozens more in the woodland.

The process continues through November. It includes plants like the cardinal flower (Lobelia cardinalis), which was once common in Glencoe’s natural areas.

Native woodland plants are grown for seed in the Garden nursery.

Native woodland plants are grown for seed in the Garden nursery.

Berries are collected for seeding.

Berries are collected for seeding.

Steffen also collects seed from external natural areas, bringing new genetic diversity into the Woods to strengthen existing plant populations. (This is an increasingly challenging task, as 50 percent of his collection sites has been lost.) Collected seeds are scattered in prepared areas of McDonald Woods, either in the spring or fall, or sometimes in the middle of winter on top of the snow.

Groundwork

“Everything you see growing, walking, or flying in the woodland is just 10 percent of the picture. In any native ecosystem, probably 90 percent of the diversity is at and below the soil surface,” he said. An entire network of plants and other living organisms exist and interact there, helping to sustain what grows above them. Oak trees and most other native plants rely on entrenched fungi, for example, to deliver nutrients and water or protect them from herbivores and disease.

PHOTO: Closeup of a tiny brown spider clinging to the back side of a leaf.

This tiny Pisaurina spider helps support the woodland ecosystem.

Microarthropods living in the leaf litter and soil, such as tiny springtails and mites, and larger organisms including spiders, also play important roles. Together with a volunteer, Steffen has dedicated 14 years of work to better understanding those interactions. They have found several species never found before in Illinois and some that even appear to be new to science. “We are still identifying some of the things we collected ten years ago,” Steffen said. And similar, rarely studied subcommunities exist higher up in the trees. “That’s another hint as to how complex the system is and how much we don’t know about it,” he added.

Some things are clear. A pioneer of oak woodland restoration, Steffen was among the first to notice that the natural layer of decomposing oak leaves and plant material was vanishing from the ground in the McDonald Woods and most other woodlands in the region. He attributes the effect to higher levels of nitrogen from the decomposing leaves of nonnative plants, and the presence of exotic, invasive earthworms. “Because so many organisms live in that layer and depend on it for survival, they are disappearing,” he cautioned.

But first, it is time to take in the rewards of winter. May is peak season for migrating birds in the Woods, including warblers and flycatchers. Sedges will bloom, along with spring ephemerals such as trillium.

PHOTO: A spare woods has dappled sunlight throughout.

The lush woodland landscape is healthy today.

Activity is everywhere, and it is a welcome sign of progress for Steffen. “It’s much healthier now than it was when I started,” he said. “All this diversity is able to function more easily now.”

The McDonald Woods are also an educational resource. Steffen will lead a rare off-trail hike there this year, and teach classes in bird watching and sedges through the Garden’s Adult Education programs.

Learn more about Jim Steffen and watch a video about his work.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Shoreline Showtime

Undercover Science

Julianne Beck —  March 29, 2014 — Leave a comment

The dress rehearsal is complete, spring is preparing to turn on the lights, and within a few weeks the curtains will go up on the Chicago Botanic Garden’s newest shoreline restoration—the North Lake.

According to Bob Kirschner, Woman’s Board Curator of Aquatic Plant and Urban Lake Studies, the project that began in 2010 will come to full fruition this year.

“One of the most important details is the maintenance and management after it is installed,” he said.

Since the restored North Lake was dedicated in September 2012, its 120,000 native plantings have been busy growing their roots as far as 6 feet deep into the soil, trying to establish themselves in their new home. The process has been all the more tenuous due to the barrage of extreme weather during that time, from droughts to floods to the deep freeze.

PHOTO: Bob Kirschner poses on the restored lakefront.

Bob Kirschner was trained as a limnologist, or freshwater scientist.

“The first few years after a large project is installed, we’re out there babying the native plants as much as we can because these plants are serving an engineering function,” said Kirschner, who explained that plant roots play an integral role in the long-term stability of the shoreline and are essential to the success of the entire restoration.

Wading In

The Garden’s lakes were rough around the edges when Kirschner arrived 15 years ago. Wrapped in 60 acres of water, the land was eroding where it met the lakes.

Although the Garden could have surrounded the shores with commonly used barriers such as boulders or sheet piling, Kirschner advocated another route.

“We’re using much more naturalized approaches,” he explained. “They are taking the place of conventional, structural approaches.”

Why? In the long run, the shoreline becomes relatively self-sustaining. In addition to preventing erosion, it offers habitat for native wildlife such as waterfowl and turtles, and filters water to help keep it clean. When the plants flower, a shiny bow of blooms wraps all of those benefits up in a neat package.

PHOTO: View across the lake of the Cove; swamp loosestrife is in bloom.

The North Lake shoreline restoration surrounds the Kleinman Family Cove.

Bright Ideas

For many Garden visitors, a stop at the shoreline is inspirational. “We’re trying to help them visualize that native landscapes can be created within an urban context to be both beautiful and ecologically functional at the same time,” said Kirschner, who counts on the attractive appearance of the plantings to open conversations about restoration, and how individuals can generate similar results. “When thoughtfully designed, you can have both the ecology and the aesthetics,” he added. 

It was this concept of incorporating the art and science of restoration in a public setting that brought him to the Garden in the first place, after more than 20 years as an aquatic ecologist with Chicago’s regional planning commission.

Kirschner, who is also the Garden’s director of restoration ecology, has managed six Garden shoreline restorations incorporating a half-million native plants.

PHOTO: Marsh marigol (Caltha palustris) in bloom along the shoreline.

Marsh marigold is a harbinger of spring.

He and his team know where all of the plants are, and they track them over time to identify those best suited for urban shoreline conditions. His favorites include sweet flag (Acorus americanus), common lake sedge (Carex lacustris), swamp loosestrife (Decodon verticillatus), and blue flag iris (Iris virginica). Perhaps the most exciting of them all is marsh marigold (Caltha palustris), the first shoreline plant to bloom each spring.

Natural areas comprise 225 of the Garden’s 385 acres.

According to Kirschner, the Garden’s hybrid approach to shoreline restoration, which incorporates ecological function and aesthetic plantings, is unique. “Part of our mission as environmental scientists is finding a way to make our work relevant and valued by as much of the public as we can reach,” he said. “It’s emotional for me because I believe so strongly in it, and that this is a path to increase ecologically sensitive landscape values within American culture.”

Changing Seasons

PHOTO: Drifts of native plants along the restored shoreline.

Drifts of native plants are a hallmark of the Garden’s restored shorelines.

The North Lake was his last major shoreline restoration for the time being. He is looking forward to taking a breath of fresh air and enjoying the show this spring. “It should be really interesting to watch how this year progresses,” he said. Because the long winter may mean a compressed spring, he said the blooms could be that much more intense once they begin in about May. “Every day when we come to the Garden, the plants will be noticeably bigger than they were the day before,” he anticipated.

When Kirschner finds a moment for reflection, he wanders over to the Waterfall Garden, where he enjoys serenity in the sound of the rushing waters, and walking the two staircases that invite discovery along the way.


©2014 Chicago Botanic Garden and my.chicagobotanic.org

Making a Splash with Orchids

Undercover Science

Julianne Beck —  March 5, 2014 — Leave a comment

Anne Nies hopped off the corporate ladder and landed in a wetland. There, she was charmed by the enchanting yet elusive white lady’s-slipper orchid (Cypripedium candidum). Or maybe it was the mountain of data that pulled her in.

PHOTO: Anne crouched in the field on a sunny day, in sun hat and gardening gloves, scribbling notes.

Anne Nies at work in the field.

After years of working in management, Nies enrolled in a master’s degree program with the Northwestern University-Chicago Botanic Garden Graduate Program in Plant Biology and Conservation. She was curious to see how she could apply her mastery of numbers and modeling from an earlier degree in mathematics to conservation challenges.

Now 1½ years later, as she prepares to graduate in June, she is completing a study of the state-threatened orchid that has a spotty record of success in Illinois.

Working with more than ten years of data collected by Plants of Concern volunteers, she has sorted through some perplexing trends with the delicate white plants. The orchids showed varied success levels in separate locations that are all classified as high-quality prairie. If the locations were equally strong, then what was causing certain populations to thrive and others to falter?

It was a question Nies had to answer, because, as she explained, when one of these plants perishes, it is almost impossible to restore or replace.

PHOTO: The orchids in the field; surrounded by taller grasses and plants.

White lady’s-slipper orchid can be camouflaged by surrounding foliage.

“What I’m looking at is how the population has access to nutrients in its habitat and how that drives population behavior,” she said. “What are the nutrients that are available to the population, and how does that affect the plants’ behavior, and in particular, how does that affect flowering?”

After a preliminary review of the data, armed her with questions and theories, Nies traveled into the field in the spring and again in the fall for a first-hand analysis.

The initial challenge was to actually find the plant. When it isn’t flowering, white lady’s-slipper blends in easily with surrounding foliage. So she learned where to look and found herself returning again and again to wet and sandy locations, such as wetlands, within the prairie ecosystem.

“Orchids in general tend to be really specific in their habitat,” she said. “I realized there was probably something really different between the prairie as a whole where the orchids live and the specific spot where they are growing.” 

Nies brought back samples of plant tissue, soil, and even root tissue where fungus lives to the Garden’s Soil Laboratory in the Daniel F. and Ada L. Rice Plant Conservation Science Center for exploration.

She hoped to find that a high level of fungus, which lives in the roots of many orchid species, was leading to the healthier populations. But that wasn’t what she found. 

PHOTO: Microscopic image of beneficial orchid fungi.

Helpful fungi live in the roots of orchids and can be identified through a microscope.

Lab results showed that in locations with nutrient-rich soil, the plants had high levels of the beneficial fungi. They also had low levels of photosynthesis—the internal process that creates food from sunlight for a plant. They were not doing very well.

In locations where the plants had higher levels of photosynthesis, Nies found that they had soil low in nutrients.

“What I’m hoping is that knowing the nutrient levels and the high sand composition can help maybe inform land managers and also with the propagation of this orchid,” she said.

Nies plans to incorporate this information with her pending conclusions into her final thesis for her master’s program, before going on to pursue a doctoral degree in the near future.

Much like math, according to Nies, everything is connected in botany, which is what makes it appealing to study. “One of the reasons I’m so interested in orchids is because they are so deeply connected to their habitat,” she explained.

PHOTO: Anne Nies.

Anne Nies explores the Tropical Greenhouse.

Even though she has transitioned to botany, Nies will surely stay connected to her background in pure math, bringing a new perspective and skills to mounting scientific challenges. “It’s amazing to me how much we still don’t know, and how much is out there that still needs to be learned,” she said.

When she has time to wander, Nies heads to the Garden’s Tropical Greenhouse, where there is always another plant calling her name.

©2014 Chicago Botanic Garden and my.chicagobotanic.org