Archives For Plant Science & Conservation

Conserving plants is one of the most significant challenges of our time—and a major focus at the Chicago Botanic Garden. From studying soil to banking seeds, from restoring habitats and protecting endangered plant species to developing new ones, Garden scientists are fighting plant extinction, pollution, and climate change through diverse and exciting research.

Undercover Science

Shoreline Showtime

Julianne Beck —  March 29, 2014 — Leave a comment

The dress rehearsal is complete, spring is preparing to turn on the lights, and within a few weeks the curtains will go up on the Chicago Botanic Garden’s newest shoreline restoration—the North Lake.

According to Bob Kirschner, Woman’s Board Curator of Aquatic Plant and Urban Lake Studies, the project that began in 2010 will come to full fruition this year.

“One of the most important details is the maintenance and management after it is installed,” he said.

Since the restored North Lake was dedicated in September 2012, its 120,000 native plantings have been busy growing their roots as far as 6 feet deep into the soil, trying to establish themselves in their new home. The process has been all the more tenuous due to the barrage of extreme weather during that time, from droughts to floods to the deep freeze.

PHOTO: Bob Kirschner poses on the restored lakefront.

Bob Kirschner was trained as a limnologist, or freshwater scientist.

“The first few years after a large project is installed, we’re out there babying the native plants as much as we can because these plants are serving an engineering function,” said Kirschner, who explained that plant roots play an integral role in the long-term stability of the shoreline and are essential to the success of the entire restoration.

Wading In

The Garden’s lakes were rough around the edges when Kirschner arrived 15 years ago. Wrapped in 60 acres of water, the land was eroding where it met the lakes.

Although the Garden could have surrounded the shores with commonly used barriers such as boulders or sheet piling, Kirschner advocated another route.

“We’re using much more naturalized approaches,” he explained. “They are taking the place of conventional, structural approaches.”

Why? In the long run, the shoreline becomes relatively self-sustaining. In addition to preventing erosion, it offers habitat for native wildlife such as waterfowl and turtles, and filters water to help keep it clean. When the plants flower, a shiny bow of blooms wraps all of those benefits up in a neat package.

PHOTO: View across the lake of the Cove; swamp loosestrife is in bloom.

The North Lake shoreline restoration surrounds the Kleinman Family Cove.

Bright Ideas

For many Garden visitors, a stop at the shoreline is inspirational. “We’re trying to help them visualize that native landscapes can be created within an urban context to be both beautiful and ecologically functional at the same time,” said Kirschner, who counts on the attractive appearance of the plantings to open conversations about restoration, and how individuals can generate similar results. “When thoughtfully designed, you can have both the ecology and the aesthetics,” he added. 

It was this concept of incorporating the art and science of restoration in a public setting that brought him to the Garden in the first place, after more than 20 years as an aquatic ecologist with Chicago’s regional planning commission.

Kirschner, who is also the Garden’s director of restoration ecology, has managed six Garden shoreline restorations incorporating a half-million native plants.

PHOTO: Marsh marigol (Caltha palustris) in bloom along the shoreline.

Marsh marigold is a harbinger of spring.

He and his team know where all of the plants are, and they track them over time to identify those best suited for urban shoreline conditions. His favorites include sweet flag (Acorus americanus), common lake sedge (Carex lacustris), swamp loosestrife (Decodon verticillatus), and blue flag iris (Iris virginica). Perhaps the most exciting of them all is marsh marigold (Caltha palustris), the first shoreline plant to bloom each spring.

Natural areas comprise 225 of the Garden’s 385 acres.

According to Kirschner, the Garden’s hybrid approach to shoreline restoration, which incorporates ecological function and aesthetic plantings, is unique. “Part of our mission as environmental scientists is finding a way to make our work relevant and valued by as much of the public as we can reach,” he said. “It’s emotional for me because I believe so strongly in it, and that this is a path to increase ecologically sensitive landscape values within American culture.”

Changing Seasons

PHOTO: Drifts of native plants along the restored shoreline.

Drifts of native plants are a hallmark of the Garden’s restored shorelines.

The North Lake was his last major shoreline restoration for the time being. He is looking forward to taking a breath of fresh air and enjoying the show this spring. “It should be really interesting to watch how this year progresses,” he said. Because the long winter may mean a compressed spring, he said the blooms could be that much more intense once they begin in about May. “Every day when we come to the Garden, the plants will be noticeably bigger than they were the day before,” he anticipated.

When Kirschner finds a moment for reflection, he wanders over to the Waterfall Garden, where he enjoys serenity in the sound of the rushing waters, and walking the two staircases that invite discovery along the way.


©2014 Chicago Botanic Garden and my.chicagobotanic.org

Undercover Science

Making a Splash with Orchids

Julianne Beck —  March 5, 2014 — Leave a comment

Anne Nies hopped off the corporate ladder and landed in a wetland. There, she was charmed by the enchanting yet elusive white lady’s-slipper orchid (Cypripedium candidum). Or maybe it was the mountain of data that pulled her in.

PHOTO: Anne crouched in the field on a sunny day, in sun hat and gardening gloves, scribbling notes.

Anne Nies at work in the field.

After years of working in management, Nies enrolled in a master’s degree program with the Northwestern University-Chicago Botanic Garden Graduate Program in Plant Biology and Conservation. She was curious to see how she could apply her mastery of numbers and modeling from an earlier degree in mathematics to conservation challenges.

Now 1½ years later, as she prepares to graduate in June, she is completing a study of the state-threatened orchid that has a spotty record of success in Illinois.

Working with more than ten years of data collected by Plants of Concern volunteers, she has sorted through some perplexing trends with the delicate white plants. The orchids showed varied success levels in separate locations that are all classified as high-quality prairie. If the locations were equally strong, then what was causing certain populations to thrive and others to falter?

It was a question Nies had to answer, because, as she explained, when one of these plants perishes, it is almost impossible to restore or replace.

PHOTO: The orchids in the field; surrounded by taller grasses and plants.

White lady’s-slipper orchid can be camouflaged by surrounding foliage.

“What I’m looking at is how the population has access to nutrients in its habitat and how that drives population behavior,” she said. “What are the nutrients that are available to the population, and how does that affect the plants’ behavior, and in particular, how does that affect flowering?”

After a preliminary review of the data, armed her with questions and theories, Nies traveled into the field in the spring and again in the fall for a first-hand analysis.

The initial challenge was to actually find the plant. When it isn’t flowering, white lady’s-slipper blends in easily with surrounding foliage. So she learned where to look and found herself returning again and again to wet and sandy locations, such as wetlands, within the prairie ecosystem.

“Orchids in general tend to be really specific in their habitat,” she said. “I realized there was probably something really different between the prairie as a whole where the orchids live and the specific spot where they are growing.” 

Nies brought back samples of plant tissue, soil, and even root tissue where fungus lives to the Garden’s Soil Laboratory in the Daniel F. and Ada L. Rice Plant Conservation Science Center for exploration.

She hoped to find that a high level of fungus, which lives in the roots of many orchid species, was leading to the healthier populations. But that wasn’t what she found. 

PHOTO: Microscopic image of beneficial orchid fungi.

Helpful fungi live in the roots of orchids and can be identified through a microscope.

Lab results showed that in locations with nutrient-rich soil, the plants had high levels of the beneficial fungi. They also had low levels of photosynthesis—the internal process that creates food from sunlight for a plant. They were not doing very well.

In locations where the plants had higher levels of photosynthesis, Nies found that they had soil low in nutrients.

“What I’m hoping is that knowing the nutrient levels and the high sand composition can help maybe inform land managers and also with the propagation of this orchid,” she said.

Nies plans to incorporate this information with her pending conclusions into her final thesis for her master’s program, before going on to pursue a doctoral degree in the near future.

Much like math, according to Nies, everything is connected in botany, which is what makes it appealing to study. “One of the reasons I’m so interested in orchids is because they are so deeply connected to their habitat,” she explained.

PHOTO: Anne Nies.

Anne Nies explores the Tropical Greenhouse.

Even though she has transitioned to botany, Nies will surely stay connected to her background in pure math, bringing a new perspective and skills to mounting scientific challenges. “It’s amazing to me how much we still don’t know, and how much is out there that still needs to be learned,” she said.

When she has time to wander, Nies heads to the Garden’s Tropical Greenhouse, where there is always another plant calling her name.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Undercover Science

Planting the Future

Julianne Beck —  February 4, 2014 — 3 Comments

David Sollenberger is building a time machine. He is capturing the prairie of today so that it can appear again in the future.

Moving about the Dixon National Tallgrass Prairie Seed Bank Preparation Laboratory at the Chicago Botanic Garden, Sollenberger works with a combination of everyday and high-tech tools. Brown paper bags filled with seeds scatter the windowsill, while metallic seed-drying machines with dials, switches, and gears line a wall. A long, stainless steel work table in the middle of the room is often surrounded by a team of focused volunteers.

The pulse of this active lab is the heartbeat of the Garden’s Seed Bank — a living collection of plant seeds reserved for potential future plantings.

PHOTO: David Sollenberger in a large, walk-in freezer room. He's wearing winter gear and a knit cap.

David Sollenberger files a seed packet in the Garden’s vault.

“Tallgrass prairie is a globally threatened ecosystem, and we’re working hard to preserve what is left,” said Sollenberger, Seed Bank manager at the Garden.

While the prairie was once visible from horizon to horizon in the Midwest, it is now reduced to small, disconnected pieces of land that struggle to survive. While many of those remnants are protected from threats such as continued development, they remain fragile due to their disconnect from other natural areas and impending threats such as climate change. Seeds preserved in a seed bank can be used to create new habitat, or used to enhance existing areas in the future.

Prairie Protocol

The Garden began its Seed Bank as a part of an international effort led by the Millennium Seed Bank and the Bureau of Land Management’s Seeds of Success program. Together with partners from across the globe, they banked 10 percent of the world’s flora by 2010. Then, the Garden chose to continue to save seeds regionally, along with Seeds of Success.

PHOTO: A view through the window into the prep lab, where staff and volunteers are sorting seeds.

Peek into the Seed Bank Preparation Laboratory on your next stroll through the lobby of the Daniel F. and Ada L. Rice Plant Conservation Science Center to see the seed savers in action!

During warmer months, Sollenberger and a small group of contractors individually go into the field to gather seeds from a list of 544 target species. Each year they visit parts of the 12 interconnected ecoregions of the tallgrass prairie system, including wetlands, meadows, and prairies. Although there are more than 3,000 prairie species in the Midwest alone, Garden scientists identified a critical list of plants to focus on that are important species within the habitats they represent.

Following collection protocols established by the Millennium Seed Bank, they try to collect seeds from at least 50 plants in a population, which allows them to capture up to 95 percent of the population’s genetic diversity. When they do, they can share a section of the collection with national seed banks for backup storage.

However, due to the small size of many prairie remnants, there are sometimes fewer than 50 individual plants of a species in a population. In that case, Sollenberger explained, they collect along maternal lines, which means that seeds are collected separately from each plant. This results in a systematic representation of the genetic diversity of a species within a population.

Time Traveling

PHOTO: Closeup of a volunteer's hand moving seeds from a bulk pile to a smaller pile with tweezers.

Seeds are counted for packaging.

During winter in the laboratory, the collected seeds are first sorted and cleaned. It can be a meticulous and time-consuming process. But Sollenberger uses a number of techniques to add efficiency.

To sort viable seeds (those that hold an embryo inside) from those that are empty hulls, the team loads a batch into a large, clear cylinder with a motor-run fan called a column blower. When the seeds are blown about within the container, the heavier ones ­fall to the bottom while the lighter ones rise to a top shelf and can be disposed. They also use an X-ray machine to look inside a sample of seeds to determine what percentage is filled and potentially viable.

For seeds from the Aster family, goldenrods, and milkweeds, the team must first remove the silky hairs, or pappus. First, seeds are rolled on a rubber mat to loosen the pappus.

Then, they are run through a typical Shop-Vac that separates the pappus from the seeds. By using this process, “we’ve been able to improve the quality of the seeds,” noted Sollenberger. “It decreases the volume of seeds so there is less packaging, which allows for more space in the seed vault, and it improves our ability to separate light, non-viable ‘empty’ seeds and other light extraneous plant materials (chaff) from heavier, potentially viable ‘filled’ seeds.”   

PHOTO: A hand with paper towel rolls seeds on a baking mat.

Seeds are rolled on a mat to remove the pappus.

PHOTO: A hand pulls seed pappus "lint" from the shop vac's filter.

A filter inside the vacuum separates the pappus from the seed.

Throughout this process, seeds are stored in the dryers. There, they are dried to 15 percent humidity, which is critical for their successful storage at minus 20-degrees Celsius. Using this process, the majority of Midwestern prairie seeds can be stored for up to 200 years.

Early in his career, David Sollenberger helped to build the Garden’s Dixon Prairie. Learn more about his work. Bring your own seeds to our annual Seed Swap, Sunday, February 23.

Another few months of seed sorting await Sollenberger and his team, but he is already thinking of spring. “We take a breath in springtime when everyone else is busy,” he chuckled. It is then that he likes to visit  McDonald Woods to soak in the beauty of a truly native natural area, before heading out in the summer to collect the next batch of seeds.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Why go all the way to China to talk about climate change, when there are plenty of conversations to have here in the U.S.?

MAP

Xishuangbanna shares border land with Myanmar and Laos.

Returning from a week at Xishuangbanna Tropical Botanical Garden for their Third International Symposium focused on “The Role of Botanic Gardens in Addressing Climate Change,” I’m struck both by the complexity and difference of the Chinese culture from ours, and by how many of the same challenges we face.

These challenges are global, and to solve them, we need to take a global perspective. Though the United States and China are in very different stages of economic development, we are the two leading emitters of greenhouse gasses—and we must lead the way in reducing our impact.

Xishuangbanna Tropical Botanical Garden is located near the village of Menglun in the Dai Independent Prefecture of Xishuangbanna in Yunnan province in China, which shares 619 miles of borderland with Myanmar and Laos.

The area is a lush, tropical paradise, and does not seem at all affected by climate change, but it is a concern: the tropical areas of China—only 0.2 percent of its total land mass—represent more than 15 percent of the biodiversity in the country.

PHOTO: Peach-colored epiphytic orchids wrap their roots around a branch.

Native epiphytic orchids in Xishuangbanna

PHOTO: A view up into an enormous strangler fig.

Strangler figs and other enormous tropical trees create a high canopy above the forest floor.

Biogeographically, Xishuangbanna is located in a transitional zone between tropical Southeast Asia and subtropical East Asia, so the climate is characterized as a seasonal tropical rain forest, with an annual average temperature of 18-22℃ (64.4-71.6℉), with seasonal variation. At about 20 degrees north of the equator, it is just on the northern edge of what is considered the tropics, though it does follow the rainy/dry seasonal patterns—May to October is the rainy season and November to April is the dry season. During my stay, they were experiencing weather somewhat colder than usual, with nighttime temperatures in the upper 40s and daytime temperatures in the low 60s. Earlier in the month, it was only in the upper 30s, but still far warmer than here in Chicago!

PHOTO: A view of the Mekong River Valley

A view of the Mekong River Valley

The vistas were breathtaking. This is a mountainous region, covered with lush tropical and semitropical plant life, wild bananas, lianas (long-stemmed, woody vines), tualang (Koompassia), and Dipterocarpaceae trees—some of which are more than 40 meters tall!

When I arrived on January 10, I noticed that many of the mountains were covered with what looked like vast areas of rust-colored trees. Rust-colored, I learned, because of a recent cold snap that damaged the leaves of the local monoculture: rubber trees.

PHOTO: View of Menglun Village, China.

A view of Menglun Village from Xishuangbanna Tropical Botanical Garden. The Mekong River tributary is in the foreground; rubber trees cover the hills in the background.

Rubber is the new thing in Xishuangbanna. Over the past 40 years, rubber trees have been bred for cooler climates, so production has moved northward from the true tropics to areas like Xishuangbanna. This has had enormous benefits for the local Dai population. Subsistence farmers in the past, they have been able to substantially improve their town infrastructure and their standard of living. But as rubber plantations expand, the ecosystem here is increasingly threatened, with only scattered fragments of untouched tropical forest left. While not directly related to climate change, the impacts of rubber were extensively discussed among conference attendees, because climate change exacerbates other environmental stresses like the fragmentation caused by the rubber plots.

PHOTO: The bark is stripped from a rubber tree. The sap is gathered and turned into rubber.

Not originally a local crop, rubber has become a primary crop of the area.

This seems to me to be a constant tension globally—the competing interest between economic development and conservation—and we’re still looking for the balance. In the United States we continue to have this debate, but around fracking and oil production rather than agriculture. Economic growth at the expense of the environment seems reasonable until we suddenly reach the point where the ecosystem services we depend on to live—clean water and air, food, medicine, etc.—are suddenly in jeopardy, either through direct human action or indirectly though other anthropogenic causes. And that brings us back to climate change.

Climate change is not an easy or comfortable topic of conversation.

Climate change is scary, politically (though not scientifically) controversial, abstract, and easy to ignore. It challenges us as individuals and organizations to rethink our priorities and choices, and to recognize that we may have to change the ways we do things, and how we live our lives, if we are to really address the problem. It is for these reasons, I think, that it generally is not a topic that botanic gardens have focused on when we develop our education or outreach programs. Internationally, gardens are finally beginning to work towards changing that, by building staff capacity to teach about climate change and by integrating climate-change education into existing and new programs.

Where better to understand and communicate how climate change will impact the natural world than at a botanic garden, where we can actually observe its impacts on plants?

The purpose of the conference was to bring together a group of international botanic garden researchers and educators to share their activities around climate change and to think broadly about how botanic gardens can and should use their resources to support movement towards a more sustainable society, as well as how we develop mitigation and adaptation strategies both for conservation purposes and human survival.  Almost 20 countries were represented at the conference, though disappointingly, I was the only U.S. attendee.

PHOTO: Group shot of a handful of conference attendees around a low table, eating dinner.

Many of our dinners were in the amazing local Dai cuisine—a real treat!

My particular area of expertise is environmental education, so experiencing tropical ecosystems directly, which there obviously isn’t the opportunity to do here in the Midwest, truly amazed and inspired me, and renewed my passion for communicating the wonder of nature to all the audiences that the Chicago Botanic Garden serves. It also drove home the real challenge we have to protect these ecosystems as the climate changes. In our discussions and in the sessions, we really focused on looking for solutions—action items—immediate and long term, that we as researchers and educators, and collectively as botanic gardens, could do to make a difference. 

After dozens of sessions on research and education (everything from paleobotany to using neuroscience to better tailor climate- education messaging—really fascinating!), and discussion in targeted working groups, we produced the Xishuangbanna Declaration on Botanical Gardens and Climate Change

In the education group, we took a multifaceted approach to the challenge—to really make a difference we need to increase our own capacity to communicate about climate change, more effectively engage our visitors in that discussion, and reach out to political, social, religious, and economic leaders to support the development of policies and practices that address the impacts of climate change on plants and society. It sounds like a herculean task, but if we each take one part of the job, I believe we can do it together. For example, here at the Chicago Botanic Garden we’ve stopped selling bottled water, use electric hand dryers rather than waste paper, are committed to LEED (Leadership in Energy and Environmental Design) certification for new building construction, and continue to look for other ways to reduce our carbon footprint.

It’s important that as institutions, gardens begin to “live the message” by implementing appropriate sustainability policies at our own institutions.

The entire declaration provides what I think is a concise, yet comprehensive, outline of how botanic gardens can use their strengths to address the very real challenge of climate change: through education, by taking meaningful steps to engage all our audiences; through research, by better understanding how climate change is affecting our environment; and through conservation, by protecting biodiversity and the other natural resources on which we depend.

PHOTO: Chinese temple.

Highlights outside the symposium included visiting this temple and the local market, and taking a canopy walk.

PHOTO: Women at market with giat 9-foot stalks of harvested sugar cane.

Sadly, raw sugar cane available in the local market would not fit in my suitcase to go home.

PHOTO: The author standing at a joint in a canopy walk path.

The signs on this walk warn that there is no turning around on the path. It’s not hard to see why.

PHOTO: A view back across the canopy bridge reveals how high the path is in the trees.

SO high up in the canopy, but the hills are still taller.

While there is no one “one size fits all” agenda or program that will work for every garden or every individual, I think there is a common approach that can be taken—gardens collectively need to develop a consistent message and mobilize our networks to communicate about climate change and its impacts. Gardens, along with our members, visitors, and patrons, have the capacity and the opportunity, if we will only take it, to inspire the broader community to act now for a better future. Join us.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Undercover Science

Wired Nature

Julianne Beck —  January 13, 2014 — 2 Comments

As winter winds disperse prairie seeds and fragrant pinecones tumble down, Bianca Rosenbaum is busy collecting. As much as she would love to forage through the seasonal natural materials outside of her office at the Chicago Botanic Garden, that’s not what she is after these days. Rather, she is gathering data.

PHOTO: Bianca Rosenbaum at her desk.

Rosenbaum manages data from her colorful office.

Seated at her desk in the Daniel F. and Ada L. Rice Plant Conservation Science Center, Rosenbaum taps away at her computer’s purple keyboard. The Garden’s conservation science information manager is busy finishing her masterpiece—a searchable collection of visual and numeric plant data. The new product is a one-stop-shop for information previously housed in three separate databases and accessible by few.  

Named the Science Collections database, the project centralizes the Garden’s data on seed collections, herbaria, and plant DNA. For the first time, the information is accessible online by anyone from international scientists to curious children.

“We saw this great opportunity to combine our databases and be able to cross reference collections,” she said. “It’s been very exciting. It’s one of my biggest, most challenging projects. It feels extremely rewarding.”

Since she began working at the Garden in 2002 as an expert in Microsoft Access, Rosenbaum has overseen the safekeeping of the data in all three of these areas as well as other Garden research collections. In just a few years, the way the information was stored and managed became outdated as technology progressed. She was thrilled with the opportunity to advance its management system.

When the Science Collections project began four years ago, one of her first tasks was to identify data used by all three databases and merge them into common tables to eliminate repetition and guarantee standardization. The result was a complicated set of linked tables that comprise the structure for the final product—called a relational database.

PHOTO: Collections database search results screen.

A search in the Science Collections database reveals merged information about each species.

She then merged all of the data on each species. Now, rather than going to different databases to find all of the herbarium, seed, and DNA information recorded about a plant, it can be found in one place. 

Rosenbaum then worked with the Garden conservation GIS lab manager, Emily Yates, to add a spatial component to the data by mapping plant locations, which are linked to each collection record. Lastly, she built a web page to serve as a portal from the database to the internet.

Data from the Garden’s Nancy Poole Rich Herbarium are mainly visual, with 17,000 images of pressed plants alongside notes about location and related details. Information from the Dixon National Tallgrass Prairie Seed Bank includes high-resolution images of seeds from 2,600 species. The program also includes notes about whether the Garden houses material that may be accessed for DNA sampling for a given plant. The records include information on all classifications of regional plants, and some international. Only those labeled as threatened or endangered are not shown on a map.

PHOTO: Page from the herbarium with Liatris aspera sample and data.

Liatris aspera (Herbarium acc. 4439)

“This job has totally changed my outlook,” said Rosenbaum, who had no real interest in botany before coming to work at the Garden. “I feel very fortunate that I’ve been here and I’ve been able to combine both the tech world and the environment.”

As a child, she grew her love of technology with encouragement from her parents—an engineer and electronic assembler. She went on to study computer engineering in college, and gained work experience with coding and data management. As a Garden employee, she has coupled those computer skills with a new set of plant-related skills. She is now comfortable with plant names, discussing scientific processes, and even growing her own vegetable garden at home.

Although she spends much of her work day glued to her computer screen, Rosenbaum does find time to look out her window, or step outside to connect with her subject matter. “I think it’s very easy to not notice this world when you are in the tech world, or the business world,” she said. “Now I can connect the two and know what it is I am working on and see what I am working to protect and conserve.”

Rosenbaum often strolls the Waterfall Garden in warm months, but she especially looks forward to spending time in the peaceful Dixon Prairie.

The recently launched database is now open to exploration at www.sciencecollections.org. Check back in coming months for Rosenbaum’s forthcoming addition of advanced search options. 


©2014 Chicago Botanic Garden and my.chicagobotanic.org