Archives For Buckthorn

When buckthorn moves in to the ecosystem, it dominates.

Imagine a friend invites you to a dinner party, promising a delicious spread of food and libations. You arrive, excited and hungry, only to find nothing but raw kale, brought by an uninvited guest. Regardless of your feelings about kale, this would be pretty underwhelming. The other guests are obviously disappointed about the monotonous spread. Most people leave, and because most people aren’t eating the kale, the kale continues to dominate the party. Even if someone brought in better foods that more people enjoy, there is no room on the tables. The kale is everywhere!

PHOTO: Buckthorn (Rhamnus cathartica).

Common buckthorn (Rhamnus cathartica)

While not a perfect analogy, this anecdote relays the reasons why buckthorn invasion is detrimental to forest ecosystems. The dinner guests are like the other plants and animals that usually live in the woods. They have certain dietary needs, and if those needs cannot be met, they will have to leave and find another place to live. The more one species dominates (kale, or in many local forests, buckthorn) the fewer species can live there, leading to the ecological equivalent of a party that ends at 8:30, just as everyone was arriving. While it may be true that one person at the party really likes kale, it’s hardly fair for the preferences of that person to supersede everyone else’s needs. In the case of buckthorn, many have opposed its removal because that denies robins a berry that they enjoy. However, keeping the buckthorn (which doesn’t belong there in the first place) is like keeping all of the kale on the tables and not allowing for other foods to be served just for that one person. Even more frustrating, the person that likes kale has plenty of other dietary options. Kale isn’t even their favorite food!

PHOTO: The McDonald woods shows healthy filtered sunlight and native plant understory growth after buckthorn removal.

The McDonald woods shows healthy filtered sunlight and native plant understory growth after buckthorn removal.

To many people, the idea of cutting down trees to help forests grow stronger is counterintuitive. But buckthorn is no ordinary tree. It is an invasive species, meaning that it doesn’t belong in Chicago area forests, and it steals resources from the plants that are supposed to live here. So remember, when you hear people talking about cutting down buckthorn, they are actually doing it to make the habitat healthier and more inclusive in the long term. They are working to replace the kale at the party with better food and drinks, ensuring that all the guests that were invited can have a good time, staying up until sunrise.

Read more about our ongoing buckthorn battle, and see the difference removal makes in restoring an ecosystem.


Bob Sherman

Bob Sherman is an undergraduate studying environmental science at Northwestern University. His research interests include prairie restoration and how abiotic factors impact prairie and forest ecosystems. He hopes that his research will have a positive impact on ecosystem restoration and management.


Students in the Chicago Botanic Garden and Northwestern University Program in Plant Biology and Conservation were given a challenge: Write a short, clear explanation of a scientific concept that can be easily understood by non-scientists. This post is part of their series.

©2016 Chicago Botanic Garden and my.chicagobotanic.org

Another Reason to Battle Buckthorn

Enhancing carbon storage through woodland restoration

Dan Larkin —  August 21, 2013 — 1 Comment

As plant enthusiasts, we often focus on how plants are affected by their environments. Their growth is affected by weather, water, nutrients, etc. But the plant-environment relationship is a two-way street, and plants can have a strong influence on the habitats they live in. We might experience this by walking in a forest and feeling ground beneath our feet that is spongy from the buildup of slowly decaying leaves that accumulated over decades or centuries. The trees in such a forest have “engineered” their environments, changing the very ground beneath them in ways that are beneficial to other plants, to animals, and to ecosystem functioning.

Unfortunately, we can also experience negative engineering effects of plants on their environments when we visit natural areas throughout the Chicago region and beyond that have been heavily invaded by the nonnative common or European buckthorn (Rhamnus cathartica). Buckthorn was brought to the Midwest for ornamental use—it’s great at making hedges—but escaped from human control and is now one of our region’s worst invasive species. As its hedge-producing credentials suggest, buckthorn is good at forming dense, shady thickets. These thickets have been shown to harm native plants and wildlife and to change physical, chemical, and soil conditions where they occur. Where there once may have been an open oak woodland underlain by a thick carpet of grasses, sedges, and wildflowers, we now often see an uninviting tangle of shrubs with little other than bare soil beneath them.

This contrast, between an environment that looks like this

Buckthorn removal has opened this area up and ongoing management restored a robust understory of native vegetation. Photo: Jim Steffen

An open-canopied patch of woodland with robust growth of native vegetation in the understory (Photo: Jim Steffen)

 

…and one that looks like this

Buckthorn-dominated area; there is almost no vegetation beneath it. Photo: Jim Steffen

Buckthorn-dominated area showing a lack of understory vegetation (Photo: Jim Steffen)

…got me and my colleague Jim Steffen wondering whether the ability of woodlands to perform carbon-storage ecosystem services could be impaired by buckthorn invasion. If so, could restoring impacted habitats back to native woodland vegetation return these services? Some background: Ecosystem services are essentially benefits nature provides to humans (e.g., clean air and drinking water, food, and other resources). Sequestering carbon—removing it from the atmosphere where it contributes to global climate change and instead locking it away harmlessly for potentially hundreds of years—is one such service.

Steffen’s more than two decades of work removing buckthorn from the Garden’s Mary Mix McDonald Woods and restoring native plant species had created the natural, long-term experiment we needed to answer these questions. We had access to areas still dominated by buckthorn for use as control treatments and patches of restored woodland of various ages that had previously been dominated by buckthorn (this is called a “restoration chronosequence”). And we had human capital to put to work: Rachel (Hesselink) Gentile and Chad Zirbel, who participated in the Garden’s Research Experiences for Undergraduates program (funded by the National Science Foundation) in 2009 and 2010, respectively. Gentile and Zirbel, in turn, mentored College First high school students Alan Lane and Kassandra Altantulkhuur.

So why did we think that buckthorn’s engineering of its environment might reduce carbon storage? Why not increase it? Mainly because of all the missed opportunities for carbon sequestration represented by the vegetation that buckthorn displaces: countless individuals of hundreds of species of understory plants, plants that make their living by drawing in carbon dioxide from the atmosphere. During photosynthesis, this captured CO2 is transformed into plant biomass, which occurs largely underground, in a complex tangle of fine, deeply penetrating roots that interact with the soil to produce tough, carbon-based compounds that are very slow to cycle back to the atmosphere. Not incidentally, all of these living understory plants and their deceased brethren (dead plant material is called “litter”) could help stabilize the soil, so that captured carbon would be less likely to wash away in thunderstorms and spring thaws.

What did we find? That buckthorn-dominated areas were indeed bad at storing carbon and that restored areas got better as they got older. Restored patches had lower rates of erosion and higher concentrations of persistent organic carbon in their soil. As restored areas matured, their vegetation continued to rebound, with plant diversity and litter biomass increasing over time. This maturation of the plant community was matched by steady increases in soil-carbon accumulation.

But wait, what about those thickets we see? Surely all that wood must be good for storing carbon? Not so much. We calculated wood biomass by measuring hundreds of trees. Even though restoration involved cutting down a lot of buckthorn, it actually led to a net increase in wood biomass, an increase that was also positively correlated with restoration age. Buckthorn’s thickets may look impressive, but its trunks and branches are puny compared to most trees, there is (almost) “no there there.” We think that taking out buckthorn may have freed native trees that can really get big, like white and red oaks, to better reach their growth potential.

In addition to the well-recognized benefits to biodiversity from active, long-term woodland restoration, our work and that of other scientists shows that there can also be tangible benefits to society. You can learn more about this research in our manuscript recently published in the journal Restoration Ecology. And you can expect to see further interesting work from Gentile (now pursuing a Ph.D. in ecology at Notre Dame), Zirbel (pursuing his Ph.D. in ecology at Michigan State), Lane (an undergraduate at DePaul University), and Altantulkhuur (attending the University of Illinois at Chicago).


©2013 Chicago Botanic Garden and my.chicagobotanic.org

Ecologist Jim Steffen takes us into McDonald Woods to learn about invasive buckthorn. For more information on invasive plants, visit chicagobotanic.org/research/conservation/invasive/.