Archives For #CBGSpike

In the past year, more than 181 million people learned about Spike, Alice the Amorphophallus, and Sprout—the Chicago Botanic Garden’s titan arums (Amorphophallus titanum) that entered a bloom cycle—through various media sources.

Now even more people may have the chance to learn about the unique corpse flower from seedlings sowed at the Garden that have been shared throughout the United States.

It all began about 12 years ago when the Garden procured titan arum bulbs and seeds, which we carefully cultivated until they were ready to flower. With the bloom cycles of Alice and Sprout, we wanted to try to pollinate our plants. In nature, titan arums are pollinated by carrion beetles. Since such insects don’t exist at the Garden, we needed to do the work ourselves. As Spike, Alice, and Sprout are thought to be very closely related (with very similar genetic makeup), we speculated that fertilization with pollen from our first titan—Spike—to Alice would not occur: they were “self incompatible”—a term that often describes a plant species that is unable to be fertilized by its own pollen. So in addition to Spike’s pollen, we looked for genetically different pollen. Fortunately, the Denver Botanic Gardens also had a titan arum (“Stinky”) in bloom last year, and they sent us some of Stinky’s pollen, which we used to pollinate Alice.

After the pollination, Alice developed large, plump red fruits. These fruits were harvested and cleaned, and Deb Moore, part of the Garden’s plant production team, sowed the seeds. The result: about 40 quick-growing seedlings—each a single titan arum leaf

We decided to keep a few seedlings for our own uses, but we really wanted to share these young plants with the broader botanical community. We contacted institutions in the American Public Gardens Association to see if any would be interested in acquiring an Amorphophallus titanum.

We had great response. Seedlings were sent to 27 institutions (see Google map above), including the Cincinnati Zoo and Botanical Garden; the JC Raulston Arboretum at North Carolina State University; the Botanic Garden of Smith College in Northampton, Massachusetts; Ganna Walska Lotusland in Santa Barbara, California; the University of Idaho Arboretum and Botanical Garden in Moscow, Idaho; Smithsonian Gardens in Washington, D.C.; University of California-Davis Department of Plant Biology; and of course, three seedlings went to the Denver Botanic Gardens to grow alongside Stinky. 


©2016 Chicago Botanic Garden and my.chicagobotanic.org

Alice the Amorphophallus—An Update on Titan Arum Fruit

Why Alice's Berries Vary

Karen Z. —  March 3, 2016 — Leave a comment

Thousands of visitors to the Orchid Show at the Chicago Botanic Garden have been delighted to see a special guest star at the Tropical Greenhouse: Alice the Amorphophallus is on display, in full and glorious fruit! 

Visitors are asking: why are some of the berries on the titan arum (or corpse flower) skinny and small, while others are big and plump?

Dr. Pat Herendeen and “Titan Tim” Pollak plucked a few of each in mid-February, X-rayed them, and performed a bit of berry surgery to get the answer.

PHOTO: An x-ray view of titan arum fruit pollinated by Spike (Chicago Botanic Garden).

An x-ray view of titan arum fruit pollinated by Spike (Chicago Botanic Garden, 2015).

PHOTO: An x-ray view of titan arum fruit pollinated by Stinky (Denver Botanic Gardens, 2015).

An x-ray view of titan arum fruit pollinated by Stinky (Denver Botanic Gardens, 2015).

PHOTO: Pat Herendeen examines titan arum seed under microscope; gloves protect his hands from oxalate crystals in the fruit.

Dr. Pat Herendeen examines titan arum seed under microscope; gloves protect his hands from oxalate crystals in the fruit.

X-rays showed that seeds had developed in the larger berries—those pollinated with pollen from Stinky, the titan arum that recently bloomed at the Denver Botanic Gardens. There were no signs of seeds in the smaller berries, which were pollinated by Spike, the Garden’s first titan arum. Dissection confirmed it; the large berries are ripening, while the smaller berries are sterile.

Spike and Stinky contributed all the pollen used for Alice’s pollination last September. About one-third of Alice’s female flowers received Spike’s pollen; about two-thirds received Stinky’s—and you can see the difference visually.

Garden scientists believe that Spike and Alice, who are siblings, are too closely related genetically to create healthy seeds, while Stinky, thought to be more distantly related, provided appropriate genetic material for proper reproduction.

You can see the difference on Alice’s infructescence (fruit stalk), too: the stalk is curving. As the chubby, seed-filled fruits from Stinky’s pollen continue to ripen and enlarge, the structure is bending over the small, non-viable fruits from Spike’s pollen. 

Each of the berries produced by Stinky’s pollen will make one or two seeds. It will take several more months for the fruits to ripen and turn deep red—a signal that seeds may finally be collected. 

PHOTO: One fruit resulting from Spike’s pollen is on the left; two fruits from Stinky’s pollen is in the center and on the right. The fruit in the center has been opened and the two seeds removed. The large seed on the right, though still unripened, reveals what the final titan arum (Amorphophallus titanum) seed will look like.

One fruit resulting from Spike’s pollen is on the left; two fruits from Stinky’s pollen are in the center and on the right. The fruit in the center has been opened and the two seeds removed. The large seed on the right, though still unripened, reveals what the final titan arum (Amorphophallus titanum) seed will look like.

What’s Next for Alice’s Seeds?

Because the titan arum’s natural habitat in Indonesia has degraded so drastically—estimates say 72 percent has been lost—scientific and academic institutions like the Chicago Botanic Garden have become safe havens in which titan arums can grow and multiply.

After Alice’s fully-ripened fruits are collected, the seeds will be extracted, cleaned, stored, and shared. Alice’s seeds will contribute to titan conservation through:

  • Seed sharing between gardens, universities, and other institutions.
  • Raising new plants here at the Garden to bolster our titan collection.
  • Researching DNA to increase diversity among titan plants.

 

Relive the excitement of Alice’s bloom! Our blogs and videos track Alice’s progress from bud to fruit.


©2016 Chicago Botanic Garden and my.chicagobotanic.org

Having recently experienced the magical bloom of our titan arum Alice the Amorphophallus at the Chicago Botanic Garden, we were reminded of the pure joy that plants can bring.

Alice provided special moments for many people—including me.

On September 28, at 12:51 a.m., I received a text from the Chicago Botanic Garden’s senior director of marketing, Jennifer Napier. All night, she had been watching the feed from a camera trained on the plant we hoped would yield the result that our first titan arum, Spike, did not. She texted because she had noticed something incredible: Alice was blooming.

PHOTO: Chicago Botanic Garden President and CEO Sophia Shaw pollinates a titan arum from the collection.

That’s me! Pollinating Alice the Amorphophallus took steady hands and quite a bit of concentration.

What a wonderful surprise. I took a breath and thought: This is it. This is what so many dedicated horticulturists at the Garden have been waiting for, and watching for, with our collection of eight titan arums over these last 12 years.

I arrived at the Garden just after 3 a.m.—my headlights reflecting in eyes of the raccoons who call our 385 acres home—and was let in by the third-shift security officers who keep the Garden safe at night.

At the Semitropical Greenhouse, I met outdoor floriculturist Tim Pollak, “Titan Tim,” and we breathed in the plant’s horrible, wonderful smell. Tom Zombolo, senior director, facilities and maintenance, joined us soon after. I don’t have scientific evidence to support this, but it was my impression that Alice “knew” we were there; maybe our warmth and carbon-monoxide exhales made the plant believe we were pollinators? I don’t know, but in the several minutes following our greenhouse entry, we perceived that Alice’s rotten scent became even more intense. There would be a lot of activity very soon, but we shared a quiet moment to reflect on this rare phenomenon and the extraordinary dedication of so many to reach this point.

Later, thanks to Tim and scientists Shannon Still and Pat Herendeen, I had the chance to hand-pollinate Alice with pollen supplied by “Spike” and our friends at the Denver Botanic Gardens. That moment was one of the most exciting and moving experiences of my life.

Alice was on view until 2 a.m. that night, and visitors of all ages patiently stood in line up to three hours to see, and smell, the corpse flower. I was grateful for the Garden operations staff, led by Harriet Resnick, who—in ways large and small—made the experience so satisfying for our visitors. More than 20,000 people visited Alice, and it was such a happy occasion for all.

PHOTO: Twitter tells the story: #CBGAlice was the see-and-be-seen event on September 29-30. It's true—she was more popular than Beyoncé for a while.

Twitter tells the story: #CBGAlice inspired and amazed visitors September 29-30.


Help us harness the power of plants to engage our senses and our communities—sponsor a program through our Annual Fund today.

Alice has now returned to the production greenhouse, joining the seven other titan arums in the Garden’s collection. Will serendipity happen again with another corpse flower bloom? Nature will determine that. But I do know these kinds of special moments truly reflect the power of plants to educate, inspire, and bring joy.


©2015 Chicago Botanic Garden and my.chicagobotanic.org

Pollen 101

Karen Z. —  September 10, 2015 — 1 Comment

Did you have a flashback to science class when you saw Spike, the titan arum? I sure did.

PHOTO: Tim Pollak and Dr. Shannon Still point out plant parts of the titan arum to the gathered crowd of visitors.

With Spike’s frilly spathe removed, Tim Pollak and Dr. Shannon Still had a rare opportunity to show the crowd the titan arum’s beautiful and astonishing inner plant parts.

At my not-really-science-minded high school, botany (the study of plants) was taught as a subsection of biology (the study of all life) class. During the botany rotation, we learned a bit about plant names and plant parts, sprouted a few seeds, and dissected a plant. That was about it for my formal plant-science education.

PHOTO: A young girl sniffs the titan arum's removed spathe.

Hands-on plant science at the Garden: a young visitor gets a whiff of Spike’s removed spathe, looking for that telltale stench.

Flash forward a couple of decades and, despite now being an avid gardener, I found myself struggling to keep up with the scientists who were looking deep into Spike’s structures and processes. By the time Dr. Shannon Still and floriculturist Tim Pollak removed the spathe (the frilly bract that never opened) from Spike’s spadix (the flower tower that grew to 6 feet tall), I’d had to learn all about the titan arum’s morphology (see below) and crack open books and laptops to review the basics about male and female flowers.

And then they started talking pollen.

Flashback: What is pollen?

PHOTO: Closeup of pollen emerging from male Amorphophallus titanum flowers.

Tiny squiggles of pollen emerge from the male flowers about three days after Spike’s spathe was removed.

Think of a grain of pollen as a tiny packet of one plant’s genetic material that needs to meet up with another flower’s female genetic material. Technically, pollen is a haploid or gamete, the cell that carries the male half of the plant’s chromosomes.

The covering of a pollen grain is directly related to how the pollen travels to the next flower. That’s why wind-pollinated plants like sweet corn or oak trees have pollen as dry and fine as dust (indeed, the word “pollen” derives from the Latin for fine flour or dust). Orchids have developed waxy balls of pollen (pollinia) that stick to the heads and bodies of the many insects, hummingbirds, and mammals they use as pollinators. And, notoriously, the pollen of ragweed is a tiny spike—the better to hold on to moist spots like the inside of human nasal passages, where the grains never germinate, but cause all sorts of sneezing and snuffling.

Honeybee-pollinated plants (like many fruits, nuts, and vegetables) have evolved along with the bees themselves, offering up both nectar and pollen as food in exchange for the movement of pollen from plant to plant.

Flashback: Why are insects pollinators?

In a word, efficiency. Plants that rely on the wind are at the mercy of the wind: much of the pollen is wasted, as it never lands anywhere near a female flower’s stigma. Ditto for plants that rely on water. Insects are much more reliable, traveling directly from one flower to another, greatly increasing the chance of pollination. Bees are especially reliable, as they prefer to work an entire plant or crop of the same flower rather than skipping from one kind of flower to another. (That’s why attentive beekeepers can get a harvest of “pure” clover or linden blossom honey, rather than a wildflower mix.)

In nature, Spike’s pollinators are carrion beetles and dung flies—insects that would be attracted by the titan arum’s rotten smell and nighttime bloom.

Flashback: How does pollen work?

PHOTO: A single female flower from titan arum Spike lies in Dr. Shannon Still's hand.

Dr. Shannon Still shows the crowd gathered around Spike one of the titan arum’s female flowers .

When a grain of pollen lands in the right place—the tip of the female flower’s reproductive structure, called the stigma—the pollen grain chemically tests the landing ground via proteins that signal genetic compatibility…or not. If deemed to be a good place to germinate, the pollen grain sends a rootlike sprout down into the style (the tube with the stigma on top), eventually reaching all the way down inside the ovary and ovule…where the male chromosomes and female chromosomes meet for fertilization and seed development.

Flash forward: What’s next for Spike?

Spike’s pollen never got the chance to hitch a ride on a carrion beetle’s back to the next titan arum in the rainforest. That’s why “Titan Tim” Pollak collected the pollen when it developed a couple of days after Spike’s operation.

Pollak says that they didn’t collect much of the bright yellow, talc-like powder—just a few test tubes’ worth (further proof that Spike ran out of energy). The pollen will be mixed with powdered milk—yes, powdered milk—in order to absorb moisture and separate the grains. Next, it will be frozen at minus 20 degrees Fahrenheit and stored in the freezer at the Garden’s seed bank.

PHOTO: As the spadix collapses from age, horticulturist Tim Pollak harvests the pollen from Spike's male flowers.

As the spadix collapses from age, horticulturist Tim Pollak harvests the pollen from Spike’s male flowers.

Spike’s pollen could then be shared with other botanical gardens or arboreta that would like to pollinate their blooming titan arums. The American Public Gardens Association has a listserve that shares notice of pollen needed or available; the Chicago Botanic Garden is a contributing member. By sharing Spike’s pollen, the hope is to increase diversity among the rare flowers blooming outside of Sumatra, the titan’s native habitat.

Pollen means that Spike lives on! Can’t wait for the next titan arum to bloom (we have seven more besides Spike in our production area)…and for the next plant flashback.

So you want to be a plant scientist?

PHOTO: Amorphophallus titanum pollen in a test tube.

An Amorphophallus titanum pollen sample is ready to be stored for future pollination.

The science of botany runs deep; at our Daniel F. and Ada L. Rice Plant Conservation Science Center, you can see scientists in many of the fields below in action. Got a STEM-minded kid? Perhaps he or she would like to study this list, which was compiled by Boyce Tankersley, director of living plant documentation, in response to the question, “What is the study of flowers called?”

  • Botany is the study of plants.
  • Arboriculture is the study of trees.
  • BioInformatics is the art and science of recording biological information.
  • Cellular biology is the study of cell constituents.
  • Floristics refers to the geographic distribution of plants.
  • Genetics is the study of gene interactions.
  • Horticulture is the art and science of growing plants.
  • Nomenclature is the naming of plants.
  • Paleobotany searches out and examines plant fossils.
  • Plant breeding does what it says.
  • Plant morphology is the study of plant structures.
  • Plant pathology studies plant pathogens and plant interactions.
  • Plant physiology is the study of plant functions such as photosynthesis.
  • Palynology studies both living and fossilized pollen and spores.
  • Taxonomy studies the relationship of one plant to other plants.

©2015 Chicago Botanic Garden and my.chicagobotanic.org

Spike’s Teachable Moment

What was happening with Spike? Our scientists investigate.

Karen Z. —  August 30, 2015 — 6 Comments

What an amazing plant science moment occurred in the Semitropical Greenhouse this morning, as a fascinated crowd gathered to see what was happening with Spike, the titan arum.

On Saturday, it was determined that Spike had run out of the energy it needed to continue its bloom cycle. Spike is powered by energy from the sun, stored in its beach-ball-sized corm—a tuber-like underground structure. A tremendous amount of energy goes into producing the single, giant flower structure that a titan can send up in its first decade or so of life (Spike is about 12 years old).

Overheard: “I wish my biology teacher was here.”

As this week’s expected bloom time passed, our science and horticultural staff went into action. Spike wasn’t dying—but the flower structure had stopped maturing, and the spathe did not open. On Friday, Dr. Shannon Still, conservation scientist, and Tim Pollak, the floriculturist who had raised Spike from a seed, peeked inside the frilly spathe to check for pollen.

“If there had been pollen, it would have been all over my hand,” Still said. Pollen’s absence meant that the male and female flowers might not be fully developed. The possibility remained that pollen might still develop, even though the spathe would not open—and THAT led to the decision to remove the “frozen” spathe to see what was happening with the real flowers inside.

Overheard: “We were watching it every day. Every 20 minutes or so.”

First, Still assembled a working kit: scalpel, probes, test tubes, paintbrushes and a “scoopula” (to collect pollen).

At 10 a.m. today, staff gathered for the delicate procedure. Pollak and Still fist bumped…and the operation began. 

As Still began cutting just above the peduncle (stalk), the crowd grew quiet. Dr. Pat Herendeen, senior director, Systematics and Evolutionary Biology, narrated for the crowd. As the spathe started to come away from the towering spadix, the internal color started to be visible.

Left: a cross-section of the spathe reveals the cell structure inside. Right: close-up on the hundreds of male (top) and female (bottom) flowers inside Spike's spathe.

Left: A cross-section of the spathe reveals the cell structure inside. Right: A close-up of the hundreds of male (top) and female (bottom) flowers inside Spike’s spathe.

“The spathe feels a bit like cabbage leaves, with a rubbery texture,” Herendeen said. “The color inside varies from one plant to another in nature. It is dark maroon, the color of rotting meat, which is meant to attract the flies and beetles that are the plant’s natural pollinators.”

Pollak held the spathe steady as Still continued to free it from the stalk. With one last cut, it came free—and the crowd gasped as the inside of the spathe was unfurled and the true flowers at the base of the spadix were revealed—pale rows of bumpy-looking male flowers atop a strip of orange and brown female flowers.

Tim Pollak and Shannon Still make the first cut.

Left: Tim Pollak and Shannon Still make the first cut. Right: Tim Pollak reveals the spathe’s ravishing color.

Herendeen answered as questions flew: The male flowers do not appear to have produced pollen yet. Spike’s fabled scent is only detectable very close up to the spathe—much less apparent than it was earlier in the week.

Cameras focused in on the flower structure, as Still and Pollak carried the two large pieces of the cut-away spathe over to the crowd. Hands reached out for a touch; noses leaned in for a sniff. Spike’s spathe was set out on a gallery table so that everyone could touch and admire it before it begins to wilt.

Overheard: “Spike was the topic of dinner conversation with our two sons every night for the past week.”

While television camera crews stepped in for close-ups on the plant’s flowers, interviewers questioned the scientists: Where does the scent come from? (It’s believed that the tall appendix helps produce the scent, though scientists are also investigating the female flowers themselves.) Would Spike bloom again? (Probably, but the corm would have to recover first, by sending up an annual leaf for a few years to gather more energy.)

Cross-legged on the floor opposite Spike sat Chicago artist Heeyoung Kim, who sketched intently during the entire process. Her intricate pencil markings captured Spike’s pleats and tightly clustered flowers—the beginnings of a botanical illustration that could inform future scientists studying the titan arum’s beautiful structure for years to come.

We have been so thrilled with the intensity of interest in Spike—it’s not every day that crowds gather to watch a plant grow! We’ll continue to keep you posted about possible pollen development, our scientists’ thoughts about Spike’s arrested development, and on the progress of the eight other titan arums now growing in our production greenhouses. 

Left: what a great vibe! Right: Kris Jarantoski explains Spike's spathe to a young visitor.

Left: What a great vibe from the gathered crowd! Right: Kris Jarantoski, executive vice president and director, explains Spike’s spathe to a young visitor.

For more information please visit our titan arum page.

©2015 Chicago Botanic Garden and my.chicagobotanic.org