Archives For Youth Education

The Garden is a great place for people of all ages to learn to about plants and the natural world. These posts relate to programs offered for children and youth, but also offer educational information for the adults in their lives as well.

Twenty years ago, I was running school field trip programs at the Chicago Botanic Garden when then-education manager Alan Rossman received a grant to start a brand new program called “College First.” This program would use the Garden site and staff to introduce 12 students from three Chicago Public Schools to careers in the green industry. He hired retired teacher Gwen Yvonne Greenwood to coordinate the program and enlist staff from all over the Garden to mentor and teach these young people.

PHOTO: Six high school students are posing in the Fruit and Vegetable Garden, wearing dark green uniform College First T-shirts

These six students from 2003 are all college grads with jobs now.

At the time, there weren’t many programs like College First anywhere in the country. College First was even unique among the other museum teen program start-ups, in that our goals were not merely to make the institution more relevant to this age group, but also to provide a springboard to meaningful careers in science-related fields. Who knew that 20 years later, with some changes and improvements along the way, this small program would evolve and grow into the Science Career Continuum we have today?

We now bring 60 students (like Mely Guzman, whom I blogged about earlier this year) from all over Chicago to the Garden every summer and expose them to environmental and conservation sciences, with the hope that a few of them will be inspired to pursue a career in this field, and maybe go on to do something important for our planet. To date, College First has served more than 500 students from 116 schools. The majority of them have attended college and have entered—or are entering—productive careers. Many of them have pursued science-related careers as a direct result of their experiences at the Garden.

PHOTO: At the reception of the College First 20-year reunion.

Program manager, Amaris Alanis Ribeiro (standing on the right) reminds a group of former students to visit Wonderland Express after they are finished eating.

We celebrated the success of College First on December 14, with a reunion party at the Garden, including a visit to Wonderland Express, for all past students, instructors, mentors, donors, and their families. More than 200 people attended the event. In between the many reunion hugs, congratulations, and words of encouragement for current students, we gave all program participants an opportunity to reflect on their experiences by telling us their stories on video, writing comments on a talk-back wall, and tweeting about the event while a live Twitter feed displayed the comments.

PHOTO: College First participants shared their thoughts and feelings on a mural outside the auditorium.

College First participants shared their thoughts and feelings on the comment wall outside the auditorium.

A former program coordinator, William Moss, is now a gardening guru and media celebrity. (Even our instructors have moved on to great things in their careers!) William presided as master of ceremonies during a presentation to recognize all the people who have made this program possible. We honored staff mentors, Louise Egerton-Warburton, Jeremie Fant, and Tom Soulsby as outstanding mentors. The College First 20th Anniversary event was made possible by the generous support of Joel Friedman of the Alvin H. Baum Family Fund. Awards were presented to Annette Kleinman and family of the Sheridan Foundation, the W.P. & H.B. White Foundation, and the Lloyd A. Fry Foundation for their generous financial support over the years.

PHOTO: William Moss at the podium.

William Moss—television celebrity, author, gardener, and all-around good guy—helped us to honor all the people who have made this program successful.

For me, this was a very rewarding event. It was such a pleasure to see so many past and present students coming together and sharing in the success of this program, especially those who are now adults with spouses and children of their own. This group represents our scientific future.

PHOTO: Group photo of past College First participants.

A total of 57 past and present College First participants attended the celebration and posed for a picture. Wow!

I wish each and every one of these smart and talented young people a happy new year and all the best in their bright futures!


©2014 Chicago Botanic Garden and my.chicagobotanic.org

Wearable Indian Corn

Kathy J. —  November 9, 2014 — Leave a comment

I always look forward to seeing Indian corn in the market and finding it in autumn decorations. Indian corn—in its range of hues from blue to deep maroon to oranges, golds, and yellows—extends the colors of the season long after the tree leaves have faded and been raked away. It is one of November’s icons, reminding us of the cultural and botanical history of the continent.

“You call it corn; we call it maize.”

Or so the 1970s TV ad for Mazola margarine told us.

Long ago, “corn” used to be the term for any grain seed, including barley, wheat, and rye, so naturally the new world plant “maize”—botanically known as Zea mays—was labeled as another kind of corn when it was introduced in Europe. For some reason, the name stuck, and we all think of the sweet yellow stuff on our dinner plates (and its close relatives) as the one and only “corn.”

ILLUSTRATION: A comparison of teosinte vs. modern corn, Zea mays.

This drawing shows the similarities between modern corn and its ancestor, teosinte, after 10,000 years of cultivation. Illustration by Nicolle Rager Fuller, National Science Foundation

There are actually many varieties of maize-corn. Archaeologists are pretty sure that all of them resulted from the domestication and selective cultivation of the grass teosinte (pronounced tay-oh-SIN-tee), around 10,000 years ago by the people living in what is now Mexico. Over time, maize became a staple crop, yielding different varieties of nutritious and versatile grains throughout the American continent.

PHOTO: Three ears of Indian corn leaning against a pumpkin.

The farmers in my neighborhood sell Indian corn in bundles of three alongside gourds, pumpkins, and bundles of straw.

Indian corn is related to popcorn. These kinds of maize differ from other kinds in that they have a harder outer coating and a starchy interior with a bit of water inside the seed, or kernel. Popcorn pops when the kernel is heated quickly at a high temperature, causing the water inside the seed to suddenly turn into steam, inflating the starch. The sweet corn we love to eat and the dent corn used for tortilla chips and livestock feed will not produce a fluffy white snack when heated.

We can exploit these properties of Indian corn and turn the kernels into necklace beads to wear during the season. 

How to make an Indian corn necklace

You will need the following:

  • Indian corn (one average-size cob will make two necklaces)
  • a sharp embroidery needle, long, with a large eye
  • string; you can use ordinary sewing thread, but a little heavier is better
  • a pot of water to cook and soften the corn
PHOTO: Indian corn.

My daughter chose this bundle of Indian corn because she liked both the deep red of cob on the left and the pinkish seeds of the one in the middle—but not for the same necklace.

First, remove all the kernels from the cob. You can wedge a butter knife between the rows of kernels and twist to pop out the seeds. Once you get some of the cob stripped, you can rub the kernels loose with your thumb.

PHOTO: a bowl full of colored corn seeds, or kernels.

These seeds have been removed from the cob and are ready for boiling to soften them.

Place the corn kernels in a pot of water and boil for 30 minutes. (This isn’t hot enough for the corn to pop.) Test for doneness by removing three  kernels. If you can push a needle through each of them easily, they are ready. Remove the pot from the heat and allow to cool. You can add cold water to cool them faster, but be sure to leave them soaking so they do not dry out, even when you are stringing them. (Pushing the needle through dry kernels can be a painful experience.)

While the corn is cooling, cut a string about three times as long as you would like your necklace to be. (You can work in shorter sections and tie them together, but it won’t look as nice.) Thread the needle and double the string; then knot the ends.

Now, select kernels in the colors you like, or pick them up randomly so the string resembles the color pattern of the corn cob. Try to pick softer pieces. Hold each kernel by the sides, and push the needle through the middle of the kernel so that the needle is not pointing toward your finger. Then slide it down the string. Leave a few inches of string below the first piece so you have some string to tie when you’re finished.  

PHOTO: This image shows how holding the seed by the sides puts fingers out of the way of the sharp end of the needle.

It is very important to hold the kernel by its sides as you poke the needle through the middle of the seed.

If the kernel is too hard and resists piercing, do not force it! Try to push the needle through at another angle, or discard that piece and select a softer one. This is important because you will prick yourself with the sharp needle if you are not careful. In fact, you’ll probably stab yourself at least once even if you are careful, so this is not a project for very young children. 

Pack the moist seeds close together on the string. As they dry, they will shrink in size. You may want to slide them together a little tighter so the string doesn’t show, but you’ll also want to leave enough wiggle room so the necklace has flexibility. When your string of corn is long enough, allow the seeds to dry completely. Then tie the ends together and you will have an attractive necklace to wear to Thanksgiving dinner or other festive gatherings!

PHOTO: Indian corn necklaces.

The finished necklaces look great layered in different lengths and colors.

One final note: when I made a corn necklace in third grade as part of a unit on Native American culture, I was under the impression that indigenous people of long ago made and wore necklaces like this. No way. All corn was grown for food, and it  was needed to sustain the population, so it would not have been turned into jewelry. This season, we can be thankful for the plentiful food we have to eat, and we can appreciate the beautiful colors of the corn as decoration during the feast.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Parents! Here’s a kid-friendly, fun-to-make idea from Kasey Bersett Eaves, who “talked squash” with fall-minded visitors at the Regenstein Fruit & Vegetable Garden on a gorgeous fall weekend.

With winter squash and pumpkins readily available at grocery stores and farmers’ markets, a nicely spiced fruit leather is a great way to use a post-Halloween pumpkin (uncarved) or extra can of purée—and to get kids to eat their vegetables in a new and tasty way. Super simple to assemble, it’s a whole lot healthier than candy!

Kids AND adults love the cinnamon-y pumpkin flavor.

Kids and adults love the cinnamon-y pumpkin flavor.

Pumpkin-spiced Snack Leather

  • 1 can of plain pumpkin or 3½ cups of cooked pumpkin pulp*
  • 1 cup of unsweetened applesauce
  • Cinnamon, nutmeg, cloves, and honey according to taste

Purée all ingredients together by hand or in a blender or food processor.

Spread purée on a foil-lined or greased cookie sheet, and smooth until just a little more than ¼-inch thick. Bake on your oven’s lowest setting (around 150 degrees) until no longer sticky to the touch (this takes close to eight hours).

Remove and cool until you can lift the edges and corners of the pumpkin leather off the foil or cookie sheet. Peel off and cut into strips. Roll each strip into plastic wrap and refrigerate until ready to eat.

If you have a food dehydrator, it’s even simpler. Spread the purée on the plastic sheeting provided with your dehydrator—or wax paper—and dehydrate until no longer sticky. Roll, refrigerate, and snack away!

It's a kid-friendly process: first, blend puree with applesauce and spices to taste.

It’s a kid-friendly process: first, blend purée with applesauce and spices to taste.

A tin foil base rolls up easily.

A tin foil lining makes cleanup easy.

*Basic Technique for Cooked Squash

Fresh-cut pumpkin (which is actually a squash) has a much higher water content than canned pumpkin. You will need to cook your pumpkin first, and use more fresh pulp. Cut your squash in half and remove the seeds. Place the squash skinside down on a baking dish, and bake at 350 degrees until the flesh is tender and the cut edges have caramelized. Remove the squash from the oven and let it rest until cool. Scoop out the pulp and discard the cooked skins.

See Kasey’s summer post, too — “Herbal Mixology


©2014 Chicago Botanic Garden and my.chicagobotanic.org

Pumpkin Seed Math Games

Kathy J. —  October 20, 2014 — Leave a comment

If you carve a pumpkin for Halloween or make pumpkin pie from scratch, you’re going to have a lot of pumpkin seeds. You can put them to good use by turning them into “dice” and playing math games this fall.

First, you’ll need to remove, clean, and dry the seeds. After scooping the pulp from your pumpkin, place it in a bowl of water and gently rub the stringy pulp off the seeds. Rinse them in a colander and let them drain. Prepare a baking sheet with a layer of parchment paper. Do not add any oil. Spread seeds in a single layer on the paper. Bake in an oven preheated to 300 degrees Fahrenheit for 30-40 minutes to dry them. Store them in a plastic bag or airtight container.

PHOTO: Pumpkin seeds on baking tray.

These seeds were baked for just over 30 minutes at 300 degrees. After they have cooled, they will be ready to become instruments of learning.

The kind of dice you make will depend on the game you want to play, but for all games the basic idea is the same. Players will toss the seeds and the side that lands face up is the number they will work with. You’ll want to select seeds that are more flat than rounded. Remove any transparent skin that remains on the seeds, so it won’t dissolve in the marker ink and make a mess. Use a regular fine Sharpie or other permanent marker. I find that the extra fine markers tend to dry out while writing on the seed. You can use any color, but for some games the color matters. You’ll also want to establish a top and bottom of the seed. I write all the numbers with the point of the seed on the bottom so 6s and 9s don’t get confused. 

Here are some games you can make:

PHOTO: Pumpkin seeds painted like dominoes.

To make a game of “Count the Dots,” draw dots on one side of each seed as shown.

Count the Dots

This works well for young children learning to count. Take six pumpkin seeds. On one side of each seed draw dots like those on a die. Leave the other side blank. To play, toss the seeds and let them land. Count all the dots facing up. The person with the most dots wins!

Add the Numbers

Older children who are learning to add can play with numbers instead of dots. You can vary this depending on the skills of the children. For early learners, make two each of 1, 2, and 3. For children practicing higher number adding, make a range from 1 to 9. To practice adding higher numbers, make a set with all 6s, 7s, 8s, and 9s. Those are scary numbers to add until you get the hang of it, which is the whole point of this game.

To play, toss the seeds, then move the blanks out of the way. Line up the numbers so they are easier to see and add up.

Addition and Subtraction

Working on subtraction? Write the number on one side of the seed in black and write the same number on the opposite side in a different color such as red. Now when you toss the seeds, add all the black numbers and subtract the red numbers. The result could be a negative number!

PHOTO: Numbered pumpkin seeds.

Playing with addition-subtraction rules where black numbers are added and red numbers are subtracted, this toss would be 1 – 7 – 2 + 4 + 8 – 6 – 9 + 3 + 5 = -3.

Evens/odds

This game works with dots or numbers, but requires a set with writing on one side only. Players take turns predicting the outcome of the toss adding up to an odd or even number. The first player calls “odds” or “evens,” tosses, checks the results. S/he gets a point if s/he is right, a point goes to his or her opponent if s/he guessed wrong. 

Numbers and Symbols

You can have more than numbers on your dice. Make a set of seeds that include numbers and function symbols: + , -, ×, and ÷. Each player should have her own identical set of seed dice. All players toss at the same time and the person who can make the number sequence with the highest answer wins. In this game, players are allowed to combine numbers to make a larger number. For example, a 1 and a 2 can become 21, as long as all the exposed numbers and symbols are used. The simplest rules for this game will be to take the order of operations from left to right, but players who want to stick to the “PEMDAS” order of operations (parentheses, exponents, multiplication, division, addition, subtraction), can certainly work that into the game. 

PHOTO: Numbered pumpkin seeds and some with math symbols.

Working with numbers and symbols gives a score of 413 for this toss.

Matching Equations

To make the game more cooperative, play the same game above, only this time the two players try to make their two number statements equal each other, or get as close as possible. This is more difficult to accomplish. so it’s all right to be a little flexible with the rules, since the players are not competing and you won’t have to settle disputes.

Players can make up their own games. They can also work in more complicated operations like exponents, or they can arrange the placement seeds above and below a line to represent division (this may require paper and pencil). Chances are, if they have reached this level of sophistication with mathematical operations, they would prefer eating the seeds to playing with them, but it’s still a fun challenge.

Whatever their level, when players have exhausted their interest in the seeds, be sure to take a break and enjoy some pumpkin “pi.” Sorry, I had to include that, because let’s face it, if you’re playing math games for fun, you’re a person who appreciates this humor!

PHOTO: Pumpkin with carved numbers for facial features.

“Pascal Pumpkinhead” gave the seedy contents of its head for mathematics.


©2014 Chicago Botanic Garden and my.chicagobotanic.org

It’s that time of year in schools again: time for science fair projects!
tomato project

As I’ve stated before, we in the education department of the Chicago Botanic Garden are committed to helping parents and teachers find great projects that teach students how plants sustain and enrich life. Last year we talked about using radish seeds; this year, it’s tomato seeds. And like last year, this project can be done by an individual student, a small group or ecology club, or an entire class.

Let’s begin by thinking about tomato seeds. Cut open a tomato and try to pick out a single seed. Go ahead and try it, I’ll wait.

PHOTO: This close up of a tomato seed shows the transparent coating that surrounds the tomato seed.

These tomato seeds glisten and mock me when I attempt to pick them up with my fingertips. The little brats also resist sliding off the cutting board.

 
As you will discover (if you didn’t already know) the seeds are coated in a gelatinous substance that makes them slippery and difficult to handle. So the first question is, what purpose does the slimy coating serve?

This is not the kind of blog post where I give you all the answers. That would not be good science teaching. I will tell you that tomato seeds can pass through the digestive tract of an animal and still germinate. Not all seeds can do that. It is possible that in nature, the coating protects the seeds on their journey from the mother plant through the hostile environment of a hungry animal’s gut and on to wherever that animal relieves itself.

Another theory is that the coating prevents premature germination of the seeds while they are inside the warm, moist, ripening fruit. Whatever the true reason—and there may be several—seed savers find it’s better to remove that coating after the seeds are harvested, because they become easier to handle and store.

The natural way to remove the coating is to ferment the seeds in a jar or bowl. It’s a simple procedure.

1. Scoop or squeeze the seedy pulp out of the tomatoes and put it into a bowl. (I prefer glass, but some people use plastic.) Add water equal to the volume of tomato pulp. Cover the bowl with plastic wrap and poke a few holes in the top.

PHOTO: glass bowl about a third full of tomato pulp, covered with plastic wrap, sitting on the windowsill.

Here are the seeds from three medium sized tomatoes, sitting by the window on the back porch, waiting to ferment.

2. Place the bowl in a warm location such as a sunny window. It is going to smell bad, so don’t put it in your dining room, unless you’re trying to reduce your appetite. You will also want to avoid fermenting your seeds next to bananas and other fruit ripening in your kitchen, because it can attract fruit flies. Leave it there for 3 to 5 days, depending on the conditions. Natural “beasties” in the air (yeast) will settle on the sugary goodness of the tomato. They will gorge themselves and reproduce, resulting in a yucky mess floating on top of the mixture. This is exactly what you want.

PHOTO: the bowl of tomato seeds is covered in white stuff.

In four days, my tomato seeds were ready, with a thin layer of white scum floating on top. Be very glad odors are not transmitted over the internet.

3. After you have grown a nice head of gunk on your seeds, remove that film and throw it away. (Unless you’d like to keep it for some reason.)  If you can’t skim all of it, no worries, the remaining goo will rinse off in the next step. Remove any floating seeds, too—they are not viable.

4. Pour the mixture into a sieve or wire strainer with fine mesh and rinse well, shaking the seeds gently to remove any remaining pulp and seed coatings.

PHOTO: The tomato seeds are spread out on a wax paper so they do not touch.

The most tedious part of the process is spreading out the seeds so they do not touch each other.

5. Dump the seeds onto wax paper. Poke at the seeds with a toothpick or other clean utensil to separate them. Remove any dark seeds that don’t look right. They are not viable. Let the seeds air dry on the wax paper in a protected place for about a week.

6. Store the completely dried seeds in an envelope until you are ready to use them.

PHOTO: close up of several tomato seeds - you can see the fuzzy outer layer of the seeds.

The cleaned and dried seeds are coated with tiny white hairs. These hairs were holding the gooey coating on the fresh seeds and now they will help the seeds soak up moisture when they are planted.

Now comes the science question: Do tomato seeds really need this kind of abuse to germinate?

The only way to find out is to experiment. Collect seeds from some ripe tomatoes—2 or 3 tomatoes will do. Ferment half of the batch using the directions above. Rinse the remaining half with water in a sieve (to remove any attached tomato pulp), and then dry them on wax paper without any other treatment. When you have all the seeds dried, use the same procedure from Eleven Experiments with Radish Seeds to measure and compare germination rates.

PHOTO: Ten tomato seeds are arranged on a paper towel in three rows; the towel is on a plate.

These ten fermented and dried tomato seeds are ready for germination testing.

Since you’re curious and kind of into this now, see if you can figure out if there are other ways to remove the seed coating that result in equal or better germination success. Some seed savers skip the fermentation and instead clean their tomato seeds with a solution of Oxi Clean. You can add this treatment to your experiment by dividing your batch of tomato seeds into three parts for: untreated, fermented, and Oxi Clean treatments.

The Oxi Clean method goes like this:

  1. Put the tomato seeds in a measuring cup and add water to make 1 cup of liquid.
  2. Add 1 tablespoon Oxi Clean power to the mixture and stir to dissolve.
  3. Let the seeds soak for 30 minutes.
  4. Rinse thoroughly in a sieve and dry on wax paper, just as you would with the other treatments.

As you will see, the Oxi Clean method is faster and there is no offensive odor, but is it better for germination?

PHOTO: A 16 ounce container of Oxi Clean Versatile Stain Remover

This product contains sodium percarbonate and sodium carbonate, no bleach, and will work for your experiment.

Note: if you Google information about this, you will find articles that discuss Oxiclean (one word) vs. Oxi Clean (two words). The two commercial products are made of different chemicals. The former is a liquid that contains sodium hypochlorite (chlorine bleach), the latter, promoted by Billy Mays, does not. For the purposes of this experiment, the less caustic, powdered Oxi Clean pictured in this blog post works perfectly well. Students should report the actual chemical names in the materials list, not just the product name. It’s just like using the scientific name of a plant instead of the common name—it’s more accurate and less confusing for someone who wants to replicate the experiment.

If you are ambitious, try a treatment of your own. After all, three tomatoes are going to give you a lot of seeds to test. My daughter tried soaking some of her seeds in vinegar. Perhaps regular dish soap or ordinary laundry detergent will remove the seed coating. Or you could try a cleaner that contains chlorine bleach. It’s up to you. Please remember to wear goggles and plastic or latex gloves while handling any chemicals because, like the tomato seeds, your eyes and hands may need a protective coating to escape harm.

I’d like to tell you what is going to happen, but then I would totally lose street cred and face ridicule from my science teacher peeps. One hint, though: be sure to measure the timing of germination as well as the number of seeds that germinate in each condition. If you want to know what happens, you’ll just have to cut open some tomatoes and try it yourself.


©2014 Chicago Botanic Garden and my.chicagobotanic.org