Archives For plant conservation

The Long Road Home

Undercover Science

Julianne Beck —  December 11, 2014 — 1 Comment

Golden paintbrush (Castilleja levisecta) is gaining ground in its native Oregon for the first time in more than 80 years. Recent reintroductions have seen the charismatic species flourish on its historic prairie landscape. To keep the momentum going, scientists are pulling out all the stops to ensure that the new populations are robust enough to endure.

“Genetic variability will be key to the reintroduction success of golden paintbrush,” explained Adrienne Basey, graduate student in the plant biology and conservation program of the Chicago Botanic Garden and Northwestern University.

PHOTO: Golden paintbrush (Castilleja levisecta).

Golden paintbrush (Castilleja levisecta) growing in propagation beds in Oregon. Photo by Tom Kaye

Basey, who previously managed a native plant nursery, is now studying the genetic diversity of golden paintbrush plants before, during, and after they are grown in a nursery prior to reintroduction to the wild.

“My work is looking at the DNA, or genetics, of the wild, nursery, and reintroduction populations to see if there is any change through that process,” she said. If there is a change, she will develop recommendations for adjusting the selection and growing process to better preserve diversity. “My goal is to give both researchers and practitioners more information to work with,” she noted.

Building for the Future

The research is unique in the relatively young field of restoration science, according to Basey’s co-advisor and molecular ecologist at the Garden, Jeremie Fant, Ph.D. “Adrienne’s study is awesome because of the fact that it has data and the samples to back it up; it is early on in this game of reintroductions and restorations, and potentially could have a lot of impact, not just for that species but what we tell nurseries in the future,” he said.

PHOTO: Adrienne Basey with herbarium specimens.

Basey works with herbarium specimens

Basey is working with data collected over the past decade by research scientists at the Institute for Applied Ecology in Corvallis, Oregon, and University of Washington herbarium specimens from Washington and Oregon dating as far back as the 1890s, and data she has collected from existing plants during field work. “It’s a perfect partnership,” said Dr. Fant, who noted that the Garden is guiding the molecular aspect of the study while colleagues in Washington and Oregon are providing a large portion of the data and samples.

The availability of all of this information on a single species that is undergoing restoration is very rare, explained Fant. “It’s a very unique scenario that she has there, so we can look at how diversity changes as we go from step to step and hopefully identify any potential issues and where they are occurring in the process.”

The study itself will likely serve as a research model for other species in the future. “There isn’t much research out there to help propagators understand when and where genetic diversity may be lost during the production process,” said Basey’s co-advisor and conservation scientist at the Garden, Andrea Kramer, Ph.D.

Last year, Basey, Fant, and Kramer worked together to write a paper outlining ten rules to maximize and maintain genetic diversity in nursery settings. “My goal is to support reintroduction efforts by informing nursery practices and demonstrate to nurseries on a broader scale how their practices can influence genetic diversity through a single case study,” said Basey.

A Green Light Ahead

Her preliminary research is focused on four golden paintbrush populations. Early evaluations show clear distinctions between a few of them, which is good news. Basey will next compare those genetic patterns to those of plants in reintroduction sites.

According to Fant, earlier studies by other researchers have shown that many restoration efforts for threatened species suffer from low levels of genetic diversity prior to reintroduction, due to a number of causes ranging from a small population size at the outset to issues in propagation. It is critical to work around those issues, he explained, as the more genetic diversity maintained in a population, the better equipped it is to survive environmental changes from drought to temperature shifts.

Basey will also compare the current level of diversity of golden paintbrush to that of its historic populations, to get a better sense of what the base level should be for reintroduction success. She plans to wrap up her lab work well before her summer 2015 graduation date.

PHOTO: A golden paintbrush is visited by its primary pollinator, a bumblebee.

A golden paintbrush is visited by its primary pollinator, a bumblebee.

For now, she is pleased with the level of diversity she sees in the current population. “I think the fact that it has a high genetic diversity means that these reintroductions could be successful,” she said. “But if we are creating a bottleneck, we need to know that so we can mitigate it as quickly as possible.” (A bottleneck is an event that eliminates a large portion of genetic variability in a population.)

Fant is enthusiastic about the timing of the study as the field of restoration is taking off. “We can jump in early as programs are being started,” he noted. “If we all learn together, I think it really does ensure that everyone gets what they need in the end.”

For Basey, it’s about building a bridge between the theoretical and the applied aspects of restoration. “My interest isn’t so much in this single species but more in the communication of science to practitioners. I like to bridge the line between research and the people who are using research,” she said.

Basey, like the golden paintbrush, is looking toward a bright future.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

I’m a conservation scientist here at the Chicago Botanic Garden. I have an incredible job that allows me to work with many wonderful graduate students and a team of researchers to study ways to restore natural areas in the Colorado Plateau.

If you’ve ever visited national parks like the Grand Canyon or Arches, you’ve experienced at least some of what the Colorado Plateau (also known as the Four Corners region) has to offer. It includes more than 80 million acres across Utah, Colorado, New Mexico, and Arizona—and the largest concentration of national parks in the country.

PHOTO: Andrea Kramer in the Colorado plateau.

Our research team heads out across a recently-burned area in search of data.

Although beautiful, the Colorado Plateau’s natural areas are facing many threats, including wildfires, a changing climate, and destructive invasive species such as cheatgrass (Bromus tectorum) and Russian knapweed (Acroptilon repens). Working with many partners, including the Bureau of Land Management, we are studying which native plants may be best able to handle these growing threats (we refer to them as “native winners”). The ultimate goal is to help make restoration of these plants and habitats as effective as possible in order to maintain healthy natural areas that support wildlife and pollinators, and help keep our air and water clean.

PHOTO: Andrea Kramer at Rio Mesa.

Another beautiful day at Rio Mesa

This is no small task. The invasive species that the native plants are up against are very impressive. For example, Russian knapweed is allelopathic (prevents other plants from growing nearby), and it has roots that can grow more than 20 feet deep, seeking the water table. Fortunately, some native species are also able to grow in these conditions, and some even appear to be evolving and adapting to be better competitors.

Three Northwestern University graduate students are working with me. Master’s student Nora Talkington is testing how different populations of a native grass are able to compete with Russian knapweed, while doctoral student Alicia Foxx is researching how different root structures of native plants help them compete with invasive species. Master’s student Maggie Eshleman is studying six native wildflower species including the smallflower globe mallow (Sphaeralcea parvifolia), which has tiny, fiery orange flowers. These wildflowers are likely “native winners” and are strong candidates for increased use when restoring habitat in the Colorado Plateau.

A rainbow of wildflowers for restoration:

  • Tansy aster (Machaeranthera canescens): This purple-flowered plant is good for pollinators, one of the few plants that flowers late in the season, and on top of that, is really good at growing in sites that need to be restored.
  • Woolly plantain (Plantago patagonica): This cute little annual plant is often the only thing we find flowering and producing seeds during extreme drought years. It is very impressive!
  • Bee plant (Cleome lutea): This annual plant has gorgeous yellow flowers. It’s good at growing in disturbed areas and, as its name indicates, is a great forage plant for bees.
PHOTO: Cleome lutea.

Bee plant (Cleome lutea) by Andrea Kramer

PHOTO: Sphaeralcea parvifolia.

Smallflower globe mallow (Sphaeralcea parvifolia) by Andrea Kramer

PHOTO: Machaeranthera canescens.

Tansy aster (Machaeranthera canescens or Dieteria canascens) by Maggie Eshleman

PHOTO: Plantago patagonica.

Woolly plantain (Plantago patagonica) by Andrea Kramer

This summer was a busy one. My students and I spent many weeks in the Colorado Plateau working with collaborators to collect seeds (as part of Seeds of Success collectors—a national native seed collection program). These seeds are now being used for studies in the Garden’s research greenhouses and growth chambers, and at study plots in Utah, Arizona, and Colorado. In the Garden’s Daniel F. and Ada L. Rice Plant Conservation Science Center, we are also using incubators to create spring- and summer-like conditions that will help us understand when and why seeds of certain species are able to germinate and grow. This is an important aspect of ultimately being able to restore species in a degraded habitat.

PHOTO: La Sal mountains in the background; the plains abloom in May.

La Sal mountains in the background; the plains abloom in May

How cool is it to be able to take research that’s been done on a small scale and actually apply it to the real world? I feel so lucky to be able to do this work, and being here at the Chicago Botanic Garden has allowed me to build long-term partnerships that investigate the application of research, rather than just focusing on publishing it. Stay tuned for updates on how these native winners perform.


This post was adapted from an article by Nina Koziol that appeared in the winter 2014 edition of Keep Growing, the member magazine of the Chicago Botanic Garden.

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Rescuing Local Ravines

Renee T. —  July 30, 2014 — 1 Comment

At first, the tree-shaded ravines near Lake Michigan look inviting, a place of filtered sunlight in the Chicago area’s North Shore. But the ravines—with homes built on the bluffs above them—are in trouble.

Overgrown with invasive plants that block the sun, the ravines are losing the native plants that help keep their soil from washing into Lake Michigan. Although some erosion is natural, the rate of erosion is accelerating, partly because of runoff from urban areas atop the ravines. The Chicago Botanic Garden and the Park District of Highland Park have stepped in to try to keep the ravines from crumbling any further.

“These are systems that have been beaten up for a long time,” said Rebecca Grill, natural areas manager for the Park District of Highland Park.

PHOTO: A bike path along the bottom of Millard Park ravine, next to a small stream.

Millard Park is one of the many Lake County ravines that face challenges from erosion.

The Garden and the Park District have put together a scientific research and “ravine trauma” team to help reestablish native plant cover that will slow surface erosion. The team is developing a mix of native seeds that private landowners can sow to help restore vegetation to the slopes of ravine and bluff properties. The seeds will be sold commercially. In addition, the team will provide homeowners with a guide on how to care for the native plants.

“The Garden has a responsibility to partner with our neighboring communities to conserve and protect oases of biodiversity such as those found within the Lake Michigan ravines,” said Bob Kirschner, the Garden’s director of restoration ecology and Woman’s Board Curator of Aquatic Plant and Urban Lake Studies. “We’re pleased to be able to pair our ecologists’ knowledge with the Park District of Highland Park’s progressive approach of helping landowners help themselves.”

The project team includes Garden ecologist Jim Steffen. With 25 years of experience, Steffen has worked on other Lake County ravines, where the lake’s cooler, damper air is funneled to create a microclimate not found anywhere in Illinois. (The ravines also are home to some of the state’s rarest plants.) As part of the project, Steffen helped design a seed-trial experiment and develop potential seed mixes.

PHOTO: Jim Steffen.

Garden ecologist Jim Steffen in the field

For the next three years, the seed mixes will be tested in plots within Highland Park’s Millard Park, one of the district’s four lakefront parks with ravines adjacent to Lake Michigan. (Check pdhp.org for more information.)

After that, the next step will be up to homeowners near the ravines. “We hope to build a better awareness about the potential they have to regenerate the diversity of native plants,” said Grill.

This post was adapted from an article by Helen Marshall that appeared in the summer 2014 edition of Keep Growing, the member magazine of the Chicago Botanic Garden.


©2014 Chicago Botanic Garden and my.chicagobotanic.org

What if the next plant conservation project wasn’t down the street, or in the neighboring county, or far away in the wilderness? What if it was right above your head, on your roof? In our increasingly urban world, making use of rooftop space might help conserve some of our precious biodiversity in and around cities.

PHOTO: Ksiazek bending to examine blooming sedums on Chicago's City Hall green roof.

The green roof on Chicago’s City Hall supports an amazing diversity of hundreds of plant species.

Unfortunately, native prairie plants have lost most of their natural habitat. In fact, less than one-tenth of one percent of prairies remains in Illinois—pretty sad for a state whose motto is the “Prairie State.” As a Chicago native, I found this very alarming. I thought, “Is it possible to use spaces other than our local nature preserves to help prevent the extinction of some of these beautiful prairie plants?” With new legislation at the turn of the century that encouraged the construction of many green roofs in Chicago, it seemed like the perfect place to test a growing hypothesis I had: maybe some of the native prairie plants that were losing habitat elsewhere could thrive on green roofs.

This idea brought me to the graduate program in Plant Biology and Conservation, a joint degree program through Northwestern University and the Chicago Botanic Garden. Here, I am investigating the possibility that the engineered habitats of green roofs can be used to conserve native prairie plants and the pollinators that they support.

PHOTO: Ksiazek examines plants in a prairie, taking data.

Which plant are you? In 2012, I surveyed natural prairies to determine which species live together.

Since I began the program as a master’s degree student in 2009, I’ve learned a lot about how native plants and pollinators can be supported on green roofs. For my master’s thesis, I wanted to see if native wildflowers were visited by pollinators and if they were receiving enough high-quality pollen to makes seeds and reproduce. Good news! The nine native wildflower species I tested produced just as many seeds on roofs as they normally do on the ground, and these seeds are able to germinate, or grow into new plants.

Once I knew that pollinator-dependent plants should be able to reproduce on green roofs, I set out to learn how to intentionally design green roofs to mimic prairies for my doctoral research. I started by visiting about 20 short-grass prairies in the Chicago region to see which species lived together in habitats that are similar to green roofs. These short-grass prairies all had very shallow soil that drained quickly and next to no shade; the same conditions you’d find on a green roof. 

PHOTO: Ksiazek poses for a photo among prairie grasses.

Plant species from this dry sand prairie just south of Chicago might also be able to survive on green roofs in the city.

PHOTO: Plant seedling.

A tiny bee balm (Monarda fistulosa) seedling grows on the green roof at the Plant Science Center at the Chicago Botanic Garden.

PHOTO: Hand holding a seedling; paperwork is in the background, along with a seedling tray.

One of my experiments involves planting tiny native seedlings into special experimental green roof trays. They’re now on top of the Plant Science Center. Go take a look!

I’m now setting up experiments that test the ability of the short-grass prairie species to live together on green roofs. Some of these experiments involved using seeds as a cheap and fast way of getting native plants on the roof. Other experiments involved using small plant seedlings that may have a better chance of survival, although, as any gardener could tell you, are more expensive and labor intensive than planting seeds. I will continue to collect data on the survival and health of all these native plants at several locations, including the green roof on the Daniel F. and Ada L. Rice Plant Conservation Science Center at the Garden.

Ideally, I would continue to collect data on these experimental prairies to see how they develop over the next 50 years and learn how the plants were able to support native insects, such as pollinating bees and butterflies. But I didn’t want my Ph.D. to last 50 years so instead, I decided to collect the same type of data on green roofs that have already been around for a few decades. Because the technology is still relatively new in America, I had to go to Germany to collect this data, where the history of green roofs is much older. Last year, through a Fulbright and Germanistic Society of America Fellowship, I collected insects and data about the plant communities on several green roofs in and around Berlin and learned that green roofs can support very diverse plant and insect communities over time. We scientists are just starting to learn more about how green roofs are different from other urban gardens and parks, but it’s looking like they might be able to contribute to urban biodiversity conservation and support.

PHOTO: Ksiazek collects insects from traps on a green roof in Berlin.

I collected almost 10,000 insects on green roofs in and around Berlin, Germany in 2013.

PHOTO: Closeup of a pinned bee collected from a green roof in Berlin.

I found more than 50 different species of bees on the green roofs in Germany.

Now that I’m back in Chicago and have been awarded research grants from several institutions, I’m setting up a new experiment to learn about how pollinators move pollen from one green roof to another. I’ll be using a couple different prairie plants to measure “gene flow,” which basically describes how pollen moves between maternal and paternal plants. If I find that pollinators bring pollen from one roof to anther, this means that green roofs might be connected to the large urban habitat, rather than merely being isolated “islands in the sky,” as some people have suggested. If this is true, then green roofs could also help other plants in their surroundings—more pollinating green roof bees could mean more fruit yield for your nearby garden.  

PHOTO: Aerial view of Chicago at Lake Michigan, with green rectangles superimposed over building which house green roofs.

The green boxes represent green roofs near Lake Michigan. How will pollinators like bees, butterflies, and moths move pollen between plants on these different roofs? This summer, I will be carrying out an experiment to find out.

There are still many questions to be answered in this new field of plant science research. I’m very excited to be learning so much through the graduate program at the Garden and to be collaborating with innovative researchers both in Chicago and abroad. If you’re interested in keeping up with my monthly progress, please visit my research blog at the Phipps Conservatory Botany in Action Fellows’ page

PHOTO: A wasp drinks water from a flower after rain.

A friendly little wasp enjoys the native green roof plants on a rainy day in Paris.

And if you haven’t already done so, I hope you’ll get a chance to visit the green roof at the Plant Science Center and see how beautiful plant conservation happening right over your head can be! 

©2014 Chicago Botanic Garden and my.chicagobotanic.org

Thank you, Rachel Carson.

peanuts2-20-1

For me, personally, Silent Spring had a profound impact. It was one of the books we read at home at my mother’s insistence and then discussed around the dinner table. . . . Rachel Carson was one of the reasons why I became so conscious of the environment and so involved with environmental issues. Her example inspired me to write Earth in the Balance. . . . Her picture hangs on my office wall among those of political leaders. . . . Carson has had as much or more effect on me than any of them, and perhaps than all of them together.

—Vice President Al Gore, “Introduction,” Silent Spring, (1994 edition), xiii

silentMy mom was a grade school teacher. During a brief period where she stayed at home with the children, she became an environmentalist. It all began with the book Silent Spring. My mother read about chemicals used in farming post-World War II and the decline of birds, and that was it; she had to take action. She remembers going to her parents’ house, and my grandfather was going around the yard, spraying DDT without protection, as his grandchildren played. He had a big bottle of DDT in the garage that had gone unnoticed until then. My mother could not believe what was happening and stopped him immediately. She had her dad throw out all pesticides. My grandfather didn’t realize there was any danger, as these chemicals promised a beautiful, American-dream green lawn. I remember at family gatherings, our family kept saying to my mother, “Elaine, what are you so worried about?”

PHOTO: Mom holds her smiling baby daughter in the air.

My hero, my mother

We became a family that ate whole wheat bread, and got the 1970s equivalent of CSA (Community Supported Agriculture) boxes. I would say that this book changed my childhood.

Some highlights:

  • My mom baked organic whole wheat bread every week; it was not commercially available yet. (Imagine going to middle school with a sandwich of PB&J on badly cut homemade whole wheat bread, surrounded by kids eating bologna on Wonder Bread white. My brother and I felt so out of place at the time. (And now it would be so accepted, wonderful, and charming.)
  • We did not have a microwave.
  • No pop. No junk food. No candy.
  • Our suburban lawn had dandelions. Mom had a dandelion knife.
  • We used nonphosphate detergent.
  • We went to weird hippie health food restaurants in Chicago. For her birthday, my mom knew she would get her requested restaurant so she would pick the only organic one in town.
  • There were no TV dinners (and we could watch one hour of television a day).
  • We all got transcendental meditation mantras.

But I digress…

She was the co-founder of S.A.V.E.: Society Against Violence to the Environment. “When Zion’s nuclear power plant was being built, we felt that it was so close to a large city…I put a full-page ad in Highland Park News, and I wrote an article about nuclear waste and terrorists.”

PHOTO: Dandelion knife.

A classic tool I still use today: the dandelion knife

When my mom wasn’t lying down in front of bulldozers, or arguing with the Park District of Highland Park or Highland Park High School about spraying grass that children played on, she was going door-to-door, stopping the spraying of mosquitoes in our town.

After we moved to San Diego, I remember lugging many heavy grocery bags filled with organic oranges and organic flour from San Diego State University’s co-op parking lot, ½ mile each way every week (several trips each time).

Later, when she got cancer,  she endured the remark, “Oh, you with your organic food, you got cancer?”

Now you can find organic food everywhere. Who doesn’t meditate?

Teach your children well…

New times and different challenges…now we are concerned with global warming.

As Rachel Carson said:

“We stand now where two roads diverge. But unlike the roads in Robert Frost’s familiar poem, they are not equally fair. The road we have long been traveling is deceptively easy, a smooth superhighway on which we progress with great speed, but at its end lies disaster. The other fork of the road—the one less traveled by—offers our last, our only chance to reach a destination that assures the preservation of the earth.”

PHOTO: Baby robins chirping; a sign of spring's arrival.

Baby robins chirping; a sign of spring’s arrival

Thanks, Mom. You taught me about Mother Earth. I still don’t have a microwave. I eat organic food, grow some my own, and am lucky to work at a garden that cares about the environment. :)

Join us for World Environment Day, Saturday, June 7, and learn what you can do to help the environment.

©2014 Chicago Botanic Garden and my.chicagobotanic.org